Al oh 2 название вещества. Названия важнейших кислот и их солей. Что такое химическая номенклатура

Классы и номенклатура химических неорганических соединений

ЧАСТЬ II

Методические указания к лабораторным работам по курсу «ХИМИЯ»

СОСТАВИТЕЛИ:

БЕЛОВА С.Б

ГРИШИНА Н.Д.

ГОРЛАЧЕВА Т.К.

МАМОНОВ И.М.

МОСКВА 2001

1.КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ

Комплексными соединениями называются определенные химические соединения, образованные сочетанием отдельных компонентов и представляющие собой сложные ионы или молекулы, способные к существованию как в кристаллическом, так и в растворенном состоянии.

В молекуле комплексного соединения один из атомов, обычно положительно заряженный, занимает центральное место и называется комплексообразователем , или центральным атомом . В непосредственной близости к нему расположены (координированы) противоположно заряженные ионы или нейтральные молекулы, называемые лигандами . Комплексообразователь и лиганды составляют внутреннюю сферу комплексного соединения.

За пределами внутренней сферы комплексного соединения находится его внешняя сфера , содержащая положительно заряженные ионы (если внутренняя сфера комплексного соединения заряжена отрицательно) или отрицательно заряженные ионы (если комплексный ион заряжен положительно); в случае незаряженной внутренней сферы внешняя сфера отсутствует.

Формула многоэлементной комплексной частицы (заряженной или нейтральной) включает центральный атом M и некоторое число n лигандов L: . Название такой частицы строится по следующей схеме:

Число одинаковых _ Название _ Название центрального

лигандов лигандов атома

При этом названия лигандов получают соединительную гласную –о , например:

F - - фторо,OH - - гидроксо,

Cl - - хлоро, CN - - циано,

O -2 – оксо, NCS -2 – тиоциано,

S -2 - тио.H - - гидридо.

Название нейтральных лигандов не изменяются (N 2 – диазот, N 2 Н 4 – гидразин, С 6 Н 6 – бензол и т.д.), кроме названий следующих распространенных лигандов:

H 2 O – аква, СО – карбонил,

NH 3 – аммин, NO – нитрозил.

Ион H + называют гидролигандом.

Названия нейтральных комплексов строятся без всяких добавлений, в названии катионных комплексов записывается степень окисленности нейтрального атома, а названия анионных комплексов имеют окончание –ат и такое же указание степени окисленности (для некоторых элементов в роли центральных атомов используются корни латинских названий элементов, т.е. вместо медь – купр, вместо железо – ферр и т.д.).

[Сo(NH 3) 3 Cl 3 ] - трихлоротриамминкобальт,

[Сu(NH 3) 4 ]SO 4 –сульфат тетраамминмеди (II),

Cl 3 – хлорид гексаакваалюминия (III),

K 4 – гексацианоферрат (II) калия,

K 3 – гексацианоферрат (III) калия.

2.НАЗВАНИЕ ИОНОВ

2.1.НАЗВАНИЕ КАТИОНОВ

Одноатомные катионы обозначаются словами «ион » и русским названием соответствующих элементов в родительном падеже.

Li +1 – ион лития,

Th +4 – ион тория.

Если элемент образует катионы с разным валентным состоянием, то оно указывается римской цифрой в скобках после названия элемента.

Ce +3 – ион церия (III),

Ce +4 – ион церия (IY).

В случае сложных катионов к названию основного элемента, образующего ион, добавляется приставка, показывающая число соединенных с ним электроотрицательных атомов или групп.

Al(OH) +2 – гидроксо алюминия –ион,

Al(OH) 2 +1 – дигидроксо алюминия -ион.

Разное валентное состояние катионообразующих элементов указывается римской цифрой после названия элемента.

FeOH +1 – гидроксожелеза II -ион,

FeOH +2 – гидроксожелеза III -ион.

Если основные соли дегидротированы (потеряли воду), то название катиона, содержащего атом кислорода, имеет приставку оксо- .

TiO +2 – оксо титан-ион,

UO 2 +2 – диоксо уран-ион.

2.2.НАЗВАНИЕ АНИОНОВ

Названия элементарных анионов образуются из корней латинских названий соответствующих элементов с суффиксом –ид- и слова «ион », соединенных дефисом.

F -1 –фторид-ион,

H -1 –гидрид-ион,

S -2 –сульфид-ион,

O -2 – оксид-ион.

Если в состав аниона входит атом водорода , то к названию элементарного иона добавляется приставка гидро- .

HS -1 –гидросульфид-ион,

ОH -1 –гидроксид-ион.

Названия анионов кислородных кислот составляются из корня латинского названия кислотообразующего элемента и имеют окончания -ат (для высшей степени окисленности элемента) и -ит (для низшей степени окисленности элемента).

SO 4 -2 -сульфат -ион,

SO 3 -2 -сульфит -ион.

Если элемент образует кислоту, находясь более чем в двух окисленных состояниях, то:

Для наивысшей степени окисленности анионы кислот имеют суффикс –ат- и приставку пер- ;

Для низшей степени окисленности суффикс –ит- и приставку гипо -.

кислота название соответствующего аниона

хлорная HClO 4 , пер хлорат -ион,

хлорноватая HClO 3 , хлорат-ион,

хлористая HClO 2 , хлорит-ион,

хлорноватистая HClO, гипо хлорит- ион.

Для анионов мета- и орто- кислот соответствующие приставки добавляются к названию иона.

РO 4 -3 -ортофосфат-ион,

РO 3 -1 -метафосфат –ион.

В названиях анионов кислых солей употребляется приставка гидро -, указывающая количество атомов водорода, содержащихся в ионе.

НРO 4 -2 - гидроортофосфат-ион.

Н 2 РO 4 -1 - дигидроортофосфат –ион

В комплексном ионе перед корнем латинского названия атома-комплексообразователя ставится приставка из греческих числительных, показывающая число лигандов и название лиганда, а после – окончание -ат . В случае, когда лигандом является анион, его название дополняется гласной -о .

3 – гексациано III феррат -ион,

4 – гексациано II феррат -ион.

3. ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ

ВАРИАНТ I

Упражнение 1 Упражнение 2 Упражнение 3
Cu 2 O HNO 3 V +3
CuO HNO 2 Bi(OH) 2 +1
BaO 2 HNbO 3 HSO 3 -1
LaF 3 H 2 CrO 4 CrPO 4
H 2 S H 2 Cr 2 O 7 KHCO 3
Al 2 S 3 Ce(OH) 3 Fe(OH) 2 Cl
OF 2 U(OH) 2 KFe(SO 4) 2

Упражнение 4

1. Гемиоксид лития,

2. Гемипентаоксид тантала,

3. Тетрафторид циркония,

4. Селеновая кислота,

5. Дифторид кислорода,

6. Тригидрид европия,

7. Тетрагидроксид олова,

8. Ортофосфат неодима,

9. Гидрокарбонат рубидия,

10.Гексацианоферрат (II) калия.

ВАРИАНТ II

Написать названия химических соединений и ионов

Упражнение 1 Упражнение 2 Упражнение 3
V 2 O 5 H 2 SO 4 La +3
Na 2 O 2 H 2 SO 3 Ir(OH) 2 +2
NdF 3 HIO HSO 4 -1
H 2 Se HIO 3 LaPO 4
CS 2 HVO 3 NaHSO 3
Al 4 C 3 La(OH) 3 Cr(OH) 2 Br
Mg 3 As 2 Ir(OH) 4 NaCr(SO 4) 2

Упражнение 4

По названию химических соединений написать их формулы

1. Тетрагидроксид церия,

2. Гемитриоксид хрома,

3. Трифторид иттрия,

4. Метаванадиевая кислота,

5. Дисульфид углерода,

6. Дигидрид кальция,

7. Монокарбид циркония,

8. Ортофосфат лантана,

9. Хлорид дигидроксоалюминия,

10. Гексацианоферрат (III) калия.

ВАРИАНТ III

Написать названия химических соединений и ионов

Упражнение 1 Упражнение 2 Упражнение 3
UO 2 H 2 SiO 3 U +3
UO 3 H 4 SiO 4 As(OH) 2 +1
Hg 2 O HClO HCO 3 -1
H 2 Te HClO 2 VPO 4
B 2 C H 2 B 4 O 7 KHSO 4
Ba 3 Sb 2 Nd(OH) 3 Al(OH) 2 Cl
CH 4 Th(OH) 4 K 2 NaPO 3

Упражнение 4

По названию химических соединений написать их формулы

1. Тригидроксид хрома,

2. Диоксид марганца,

3. Тетрафторид урана,

4. Молибденовая кислота,

5. Тригидрид иттрия,

6. Дихромат калия,

7. Бромид дигидроксоалюминия,

8. Гидрокарбонат натрия,

9. Хромат калия,

10. Гексацианоферрат (II) натрия.

ВАРИАНТ IY

Написать названия химических соединений и ионов

Упражнение 1 Упражнение 2 Упражнение 3
WO 2 H 2 MnO 4 Th +4
WO 3 HMnO 4 Al(OH) 2 +1
K 2 O 2 HClO 4 HCrO 4 -1
LuF 3 HClO 3 NdPO 4
HI H 4 P 2 O 7 KHCrO 4
ZnSe V(OH) 3 BiOHCl 2
SiF 4 Hf(OH) 4 LiAl(SO 4) 2

Упражнение 4

По названию химических соединений написать их формулы

1. Диоксид серы,

2. Тетрагидроксид тория,

3. Гексафторид урана,

4. Тетрагидрид циркония,

5. Гидросульфит натрия,

6. Хлорид дигидроксожелеза (III),

7. Молибдат аммония,

8. Тетраборная кислота,

9. Сульфат хрома калия,

10. Гексацианоферрат (III) натрия.

4.СПОСОБЫ ПОЛУЧЕНИЯ ХИМИЧЕСКИХ СОЕДИНЕНИЙ

4.1.СПОСОБЫ ПОЛУЧЕНИЯ ОСНОВАНИЙ

1)Получение щелочей:

1) Металл + вода 2Na+2H 2 O=2NaOH+H 2 ­.

Ba+2H 2 O=2Ba(OH) 2 +H 2 ­.

2) Оксид + вода Li 2 O+H 2 O=2LiOH.

CaO + 2H 2 O=2Ca(OH) 2 .

3) Электролиз водных NaCl Û Na + + Cl - .

растворов солей щелочных

металлов

2) Получение нерастворимых в воде оснований:

Соль + щелочь CuSO 4 +2NaOH=Cu(OH) 2 ¯+Na 2 SO 4 ,

Cu 2+ + 2OH - =Cu(OH) 2 .

FeCl 2 +2KOH=Fe(OH) 2 ¯+2KCl,

Fe 2+ + 2OH - =Fe(OH) 2 .

________________________________________________

Исключение: Na 2 CO 3 +Ca(OH) 2 =2NaOH+Ca(CO) 3 ¯.

ПОЛУЧЕНИЕ ОСНОВАНИЙ

Опыт 1. Взаимодействие магния с водой.

Mg+2H 2 O = Mg(OH) 2 ¯+H 2 ­

малиновое окраш.

Вывод: окрашивание раствора в малиновый цвет в присутствии фенолфталеина (ф.ф.) у поверхности раздела фаз Mg - H 2 O происходит вследствие образования Mg(OH) 2 .

Опыт 2. Взаимодействие оксида магния с водой

MgO+H 2 O = Mg(OH) 2 ¯

малиновое окраш.

Вывод: окрашивание раствора в малиновый цвет в присутствии фенолфталеина (ф.ф.) указывает на образование Mg(OH) 2 . Наблюдаем более интенсивное окрашивание раствора чем в первом опыте, т.к. у MgO большая поверхность.

Опыт 3. Получение слабых и малорастворимых оснований

1.1. NH 4 Cl+NaOH = NH 4 OH (NH 3 +H 2 O)+NaCl.

1.2. FeCl 3 +3NaOH = Fe(OH) 3 ¯+3NaCl,

Fe 3+ + 3OH - =Fe(OH) 3 .

1.3. CuSO 4 +2NaOH=Cu(OH) 2 ¯+Na 2 SO 4 ,

к. голубой

Cu 2+ + 2OH - =Cu(OH) 2 .

Вывод: Слабые и малорастворимые основания образуются путем взаимодействия соли с щелочами.

СПОСОБЫ ПОЛУЧЕНИЯ КИСЛОТ

1) Получение кислородсодержащих кислот:

взаимодействие соответствующих SO 3 +H 2 O = H 2 SO 4

ангидридов с водой N 2 O 5 +H 2 O = 2HNO 3 .

2) Получение некоторых кислородсодержащих кислот:

действие на неметаллы сильных 2P+5HNO 3 +2H 2 O = 3H 3 PO 4 +5NO

окислителей 3I 2 +10HNO 3 = 6HIO 3 +10NO+2H 2 O.

3) Получение бескислородных кислот:

прямое взаимодействие элементов H 2 +Cl 2 =2HCl.

4)Общий способ:

реакция обмена между солью NaCl+H 2 SO 4 =HCl­+NaHSO 4

и менее летучей кислотой NaNO 3 +H 2 SO 4 =HNO 3 ­+NaHSO 4 .

4.4.ПОЛУЧЕНИЕ КИСЛОТ

Опыт 1. Взаимодействие ангидрида с водой

1.1. S+O 2 =SO 2 ,

1.2.SO 2 +H 2 O +H 2 SO 3 .

Опыт 2. Реакция обмена между солью и более летучей кислотой

2.1. 2NaCH 3 COO+H 2 SO 4 =Na 2 SO 4 +2CH 3 COOH­,

к. характ.запах

CH 3 COO - +H + = CH 3 COOH.

2.2. 2NaCl+H 2 SO 4 =Na 2 SO 4 +2HCl­.

выделение газа

Вывод. Одними из способов получения кислот являются:

Взаимодействие ангидрида с водой;

Взаимодействие соли с нелетучей кислотой.

4.5.СПОСОБЫ ПОЛУЧЕНИЯ СОЛЕЙ

1) Из металлов :

Металлы с неметаллами Mg+Cl 2 =MgCl 2 ,

Металлы с кислотами Zn+H 2 SO 4 =ZnSO 4 +H 2 ­,

Металлы с cолями Cu+HgCl 2 =CuCl 2 +Hg.

2) Из оксидов :

Основные оксиды с кислотами CaO+2HCl= CaCl 2 +H 2 O,

Кислотные оксиды с основаниями CO 2 +Ca(OH) 2 = CaCO 3 +H 2 O,

Кислотные оксиды с основными CaO+CO 2 =CaCO 3 .

3) Реакция нейтрализации :

Кислота с основанием H 2 SO 4 +2NaOH=Na 2 SO 4 +2H 2 O.

4) Из солей:

Соли с солями AgNO 3 +NaCl=AgCl¯+NaNO 3 ,

Соли c основаниями CuSO 4 +2NaOH=Cu(OH) 2 ¯+Na 2 SO 4 ,

Соли c кислотами Na 2 CO 3 +2HCl=2NaCl+H 2 O+CO 2 ­.

4.6.ПОЛУЧЕНИЕ СОЛЕЙ

Опыт 1 . Взаимодействие соли с основанием

Al 2 (SO 4) 3 +8NaOH= 3Na 2 SO 4 +2NaAlO 2 +4H 2 O.

Опыт 2 . Взаимодействие соли с солью

Pb(NO 3) 2 +KI=PbI 2 ¯+2KNO 3 ,

Pb 2+ + 2I - =PbI 2 ¯.

4.7.ПОЛУЧЕНИЕ И СВОЙСТВА АМФОТЕРНЫХ ГИДРОКСИДОВ

Опыт 1 .

ZnSO 4 +2NaOH= Zn(OH) 2 ¯+ Na 2 SO 4 ,

Zn +2 + 2OH - =Zn(OH) 2 ¯.

2H + + ZnO 2 -2 Û Zn(OH) 2 ÛZn +2 + 2OH - .

Опыт 1 .1 .

Zn(OH) 2 +2HCl=ZnCl 2 +2H 2 O,

Zn(OH) 2 +2H + =Zn +2 +2H 2 O.

Опыт 1 .2 .

Zn(OH) 2 +2NaOH=Na 2 ZnO 2 +2H 2 O,

Zn(OH) 2 +2OH - =ZnO 2 -2 +2H 2 O.

Вывод: гидроксид цинка обладает амфотерными свойствами, т.е. реагирует как с кислотами, проявляя основные свойства, так и с основаниями, проявляя кислотные свойства.

ПРИЛОЖЕНИЕ

Названия важнейших кислот и их солей

Кислота Название
кислоты Соли
HAlO 2 Метаалюминиевая Метаалюминат
HAsO 3 Метамышьяковая Метаарсенат
H 3 AsO 4 Ортомышьяковая Ортоарсенат
HАsO 2 Метамышьяковистая Метаарсенит
H 3 AsO 3 Ортомышьяковистая Ортоарсенит
HBO 2 Метаборная Метаборат
H 3 BO 3 Ортоборная Ортоборат
H 2 B 4 O 7 Четырехборная Тетраборат
HBr Бромоводород Бромид
HOBr Бромноватистая Гипобромит
HBrO 3 Бромноватая Бромат
HCOOH Муравьиная Формиат
CH 3 COOH Уксусная Ацетат
HCN Циановодород Цианид
H 2 СO 3 Угольная Карбонат
H 2 С 2 O 4 Щавелевая Оксалат
HCl Хлороводород Хлорид
HClO Хлорноватистая Гипохлорит
HСlO 2 Хлористая Хлорит
HСlO 3 Хлорноватая Хлорат
HСlO 4 Хлорная Перхлорат
HCrO 2 Метахромистая Метахромит
H 2 СrO 4 Хромовая Хромат
H 2 Сr 2 O 7 Двухромовая Дихромат
HI Иодоводород Иодид
HOI Иодноватистая Гипоиодит
HIO 3 Иодноватая Иодат
HIO 4 Иодная Периодат
HMnO 4 Марганцовая Перманганат
H 2 MnO 4 Марганцовистая Манганат
H 2 MoO 4 Молибденовая Молибдат
HN 3 Азидоводород (азотистоводородная) Азид
HNO 2 Азотистая Нитрит
HNO 3 Азотная Нитрат
HPO 3 Метафосфорная Метафосфат
H 3 PO 4 Ортофосфорная Ортофосфат
H 4 P 2 O 7 Двуфосфорная (пирофосфорная) Дифосфат (пирофосфат)
H 3 PO 3 Фосфористая Фосфит
H 3 PO 2 Фосфорноватистая Гипофосфит
H 2 S Сероводород Сульфид
HSCN Родановодород Радонит
H 2 SO 3 Сернистая Сульфит
H 2 SO 4 Серная Сульфат
H 2 S 2 O 3 Тиосерная Тиосульфат
H 2 S 2 O 7 Двусерная (пиросерная) Дисульфат (пиросульфат)
H 2 S 2 O 8 Пероксодвусерная (надсерная) Пероксодисульфат (персульфат)
H 2 Se Селеноводород Селенид
H 2 SeO 3 Селенистая Селенит
H 2 SeO 4 Селеновая Селенат
H 2 SiO 3 Кремниевая Силикат
HVO 3 Ванадиевая Ванадат
H 2 WO 4 Вольфрамовая Вольфрамат

Проверить информацию. Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье. На странице обсуждения идёт дискуссия на тему: Сомнения относительно терминологии. Химическая формула … Википедия

Химическая формула отражение информации о составе и структуре веществ с помощью химических знаков, чисел и разделяющих знаков скобок. В настоящее время различают следующие виды химических формул: Простейшая формула. Может быть получена опытным… … Википедия

Химическая формула отражение информации о составе и структуре веществ с помощью химических знаков, чисел и разделяющих знаков скобок. В настоящее время различают следующие виды химических формул: Простейшая формула. Может быть получена опытным… … Википедия

Химическая формула отражение информации о составе и структуре веществ с помощью химических знаков, чисел и разделяющих знаков скобок. В настоящее время различают следующие виды химических формул: Простейшая формула. Может быть получена опытным… … Википедия

Химическая формула отражение информации о составе и структуре веществ с помощью химических знаков, чисел и разделяющих знаков скобок. В настоящее время различают следующие виды химических формул: Простейшая формула. Может быть получена опытным… … Википедия

Основная статья: Неорганические соединения Список неорганических соединений по элементам информационный список неорганических соединений, представленный в алфавитном порядке (по формуле) для каждого вещества, водородные кислоты элементов (при их… … Википедия

Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия

Химическим уравнением (уравнением химической реакции) называют условную запись химической реакции с помощью химических формул, числовых коэффициентов и математических символов. Уравнение химической реакции даёт качественную и количественную… … Википедия

Химическое программное обеспечение компьютерные программы, используемые в области химии. Содержание 1 Химические редакторы 2 Платформы 3 Литература … Википедия

Книги

  • Краткий словарь биохимических терминов , Кунижев С.М. , Словарь предназначен для студентов химических и биологических специальностей университетов, изучающих курс общей биохимии, экологии и основ биотехнологии, а также может быть использован в… Категория: Биология Издатель: ВУЗОВСКАЯ КНИГА , Производитель: ВУЗОВСКАЯ КНИГА ,
  • Выбросы вредных веществ и их опасности для живых организмов , В. И. Романов , Книга имеет целью объединить и донести до читателя в популярной форме большой объем информации медико-биологического, природоохранного и противоаварийного характера. В ней рассмотрены выбросы… Категория:

В настоящее время химикам известно более 20 миллионов химических соединений. Очевидно, что запомнить названия десятков миллионов веществ не в состоянии ни один человек.

Именно поэтому Международным союзом теоретической и прикладной химии разработана систематическая номенклатура органических и неорганических соединений. Построена система правил, которая позволяет называть оксиды, кислоты, соли, комплексные соединения, органические вещества и т. д. Систематические названия имеют ясный, однозначный смысл. Например, оксид магния - это MgO, сульфат калия - CaSO 4 , хлорметан - CH 3 Cl и т. д.

Химик, открывший новое соединение, не сам выбирает ему название, а руководствуется четкими правилами ИЮПАК. Любой его коллега, работающий в любой стране мира, сможет по названию быстро построить формулу нового вещества.

Систематическая номенклатура удобна, рациональна и признана во всем мире. Существует, однако, небольшая группа соединений, для которых "правильная" номенклатура практически не применяется. Названия некоторых веществ используются химиками на протяжении десятилетий и даже столетий. Эти тривиальные названия более удобны, более привычны, и настолько прочно вошли в сознание, что практики не желают менять их на систематические. В действительности, даже правила ИЮПАК допускают использование тривиальных названий.

Ни один химик не назовет вещество CuSO 4 5H 2 O пентагидратом сульфата меди (II) . Гораздо проще использовать тривиальное название этой соли: медный купорос . Никто не будет спрашивать у коллеги: "Скажи, а у вас в лаборатории не осталось гексацианоферрата (III) калия?" Так ведь и язык сломать можно! Спросят иначе: "Красной кровяной соли не осталось?"

Коротко, удобно и привычно. К сожалению, тривиальные названия веществ не подчиняются никаким современным правилам. Их нужно просто запомнить. Да-да, химик должен помнить, что FeS 2 - это пирит , а под привычным всем термином "мел" скрывается карбонат кальция.

В приведенной ниже таблице перечислены некоторые наиболее часто встречающиеся тривиальные названия солей, оксидов, кислот, оснований и т. д. Обратите внимание: одно вещество может иметь несколько тривиальных названий. Например, хлорид натрия (NaCl) можно назвать галитом , а можно - каменной солью .

Тривиальное название Формула вещества Систематическое название
алмаз С углерод
алюмокалиевые квасцы KAl(SO 4) 2 12H 2 O додекагидрат сульфата алюминия-калия
ангидрит CaSO 4 сульфат кальция
барит BaSO 4 сульфат бария
берлинская лазурь Fe 4 3 гексацианоферрат (II) железа (III)
бишофит MgCl 2 6H 2 O гексагидрат хлорида магния
боразон BN нитрид бора
бура Na 2 B 4 O 7 10H 2 O декагидрат тетрабората натрия
водяной газ CO + H 2 водород + оксид углерода (II)
галенит PbS сульфид свинца (II)
галит NaCl хлорид натрия
гашеная известь Ca(OH) 2 гидроксид кальция
гематит Fe 2 O 3 оксид железа (III)
гипс CaSO 4 2H 2 O дигидрат сульфата кальция
глинозем Al 2 O 3 оксид алюминия
глауберова соль Na 2 SO 4 10H 2 O декагидрат сульфата натрия
графит С углерод
едкий натр NaOH гидроксид натрия
едкое кали KOH гидроксид калия
железный колчедан FeS 2 дисульфид железа
железный купорос FeSO 4 7H 2 O гептагидрат сульфата железа (II)
желтая кровяная соль K 4 гексацианоферрат (II) калия
жидкое стекло Na 2 SiO 3 силикат натрия
известковая вода раствор Ca(OH) 2 в воде раствор гидроксида кальция в воде
известняк CaCO 3 карбонат кальция
каломель Hg 2 Cl 2 дихлорид диртути
каменная соль NaCl хлорид натрия
киноварь HgS сульфид ртути (II)
корунд Al 2 O 3 оксид алюминия
красная кровяная соль K 3 гексацианоферрат (III) калия
красный железняк Fe 2 O 3 оксид железа (III)
криолит Na 3 гексафтороалюминат натрия
ляпис AgNO 3 нитрат серебра
магнезит MgСO 3 карбонат магния
магнетит Fe 3 O 4
магнитный железняк Fe 3 O 4 оксид дижелеза (III) - железа (II)
малахит Cu 2 (OH) 2 CO 3 карбонат гидроксомеди (II)
медный блеск Cu 2 S сульфид меди (I)
медный купорос CuSO 4 5H 2 O пентагидрат сульфата меди (II)
мел CaCO 3 карбонат кальция
мрамор CaCO 3 карбонат кальция
нашатырный спирт водный раствор NH 3 раствор аммиака в воде
нашатырь NH 4 Cl хлорид аммония
негашеная известь CaO оксид кальция
нитропруссид натрия Na 2 пенатцианонитрозилийферрат (II) натрия
олеум раствор SO 3 в H 2 SO 4 раствор оксида серы (VI) в конц. серной кислоте
перекись водорода H 2 O 2 пероксид водорода
пирит FeS 2 дисульфид железа
пиролюзит MnO 2 диоксид марганца
плавиковая кислота HF фтороводородная кислота
поташ K 2 СO 3 карбонат калия
реактив Несслера K 2 щелочной раствор тетраиодомеркурата (II) калия
родохрозит MnCO 3 карбонат марганца (II)
рутил TiO 2 диоксид титана
свинцовый блеск PbS сульфид свинца (II)
свинцовый сурик Pb 3 O 4 оксид дисвинца (III) - свинца (II)
селитра аммонийная NH 4 NO 3 нитрат аммония
селитра калийная KNO 3 нитрат калия
селитра кальциевая Ca(NO 3) 2 нитрат кальция
селитра натронная NaNO 3 нитрат натрия
селитра чилийская NaNO 3 нитрат натрия
серный колчедан FeS 2 дисульфид железа
сильвин KCl хлорид калия
сидерит FeCO 3 карбонат железа (II)
смитсонит ZnCO 3 карбонат цинка
сода кальцинированная Na 2 CO 3 карбонат натрия
сода каустическая NaOH гидроксид натрия
сода питьевая NaHCO 3 гидрокарбонат натрия
соль Мора (NH 4) 2 Fe(SO 4) 2 6H 2 O гексагидрат сульфата аммония-железа (II)
сулема HgCl 2 хлорид ртути (II)
сухой лед CO 2 (твердый) диоксид углерода (твердый)
сфалерит ZnS сульфид цинка
угарный газ CO оксид углерода (II)
углекислый газ CO 2 оксид углерода (IV)
флюорит CaF 2 фторид кальция
халькозин Cu 2 S сульфид меди (I)
хлорная известь смесь СаCl 2 , Ca(ClO) 2 и Ca(OH) 2 смесь хлорида кальция, гипохлорита кальция и гидроксида кальция
хромомокалиевые квасцы KCr(SO 4) 2 12H 2 O додекагидрат сульфата хрома (III)-калия
царская водка смесь HCl и HNO 3 смесь концентрированных растворов соляной и азотной кислот в объемном отношении 3:1
цинковая обманка ZnS сульфид цинка
цинковый купорос ZnSO 4 7H 2 O гептагидрат сульфата цинка

Примечание: природные минералы состоят из нескольких веществ. Например, в составе свинцового блеска можно найти соединения серебра. В таблице, естественно, указывается только основное вещество.

Вещества вида Х n H 2 O называют кристаллогидратами. В их состав входит т. н. "кристаллизационная" вода. Например, можно сказать, что сульфат меди (II) кристаллизуется из водных растворов с 5 молекулами воды. Получаем пентагидрат сульфата меди (II) (тривиальное название - медный купорос).


Если вас интересуют систематические названия, рекомендую обратиться к разделу "

Классификация неорганических веществ и их номенклатура основаны на наиболее простой и постоянной во времени характеристике - химическом составе , который показывает атомы элементов, образующих данное вещество, в их числовом отношении. Если вещество из атомов одного химического элемента, т.е. является формой существования этого элемента в свободном виде, то его называют простым веществом ; если же вещество из атомов двух или большего числа элементов, то его называют сложным веществом . Все простые вещества (кроме одноатомных) и все сложные вещества принято называть химическими соединениями , так как в них атомы одного или разных элементов соединены между собой химическими связями.

Номенклатура неорганических веществ состоит из формул и названий. Химическая формула - изображение состава вещества с помощью символов химических элементов, числовых индексов и некоторых других знаков. Химическое название - изображение состава вещества с помощью слова или группы слов. Построение химических формул и названий определяется системой номенклатурных правил .

Символы и наименования химических элементов приведены в Периодической системе элементов Д.И. Менделеева. Элементы условно делят на металлы инеметаллы . К неметаллам относят все элементы VIIIА-группы (благородные газы) и VIIА-группы (галогены), элементы VIА-группы (кроме полония), элементы азот, фосфор, мышьяк (VА-группа); углерод, кремний (IVА-группа); бор (IIIА-группа), а также водород. Остальные элементы относят к металлам.

При составлении названий веществ обычно применяют русские наименования элементов, например, дикислород, дифторид ксенона, селенат калия. По традиции для некоторых элементов в производные термины вводят корни их латинских наименований:

Например : карбонат, манганат, оксид, сульфид, силикат.

Названия простых веществ состоят из одного слова - наименования химического элемента с числовой приставкой, например:

Используются следующие числовые приставки :

Неопределенное число указывается числовой приставкой n - поли.

Для некоторых простых веществ используют также специальные названия, такие, как О 3 - озон, Р 4 - белый фосфор.

Химические формулы сложных веществ составляют из обозначения электроположительной (условных и реальных катионов) и электроотрицательной (условных и реальных анионов) составляющих, например, CuSO 4 (здесь Cu 2+ - реальный катион, SO 4 2 - - реальный анион) и PCl 3 (здесь P +III - условный катион, Cl -I - условный анион).

Названия сложных веществ составляют по химическим формулам справа налево. Они складываются из двух слов - названий электроотрицательных составляющих (в именительном падеже) и электроположительных составляющих (в родительном падеже), например:

CuSO 4 - сульфат меди(II)
PCl 3 - трихлорид фосфора
LaCl 3 - хлорид лантана(III)
СО - монооксид углерода

Число электроположительных и электроотрицательных составляющих в названиях указывают числовыми приставками, приведенными выше (универсальный способ), либо степенями окисления (если они могут быть определены по формуле) с помощью римских цифр в круглых скобках (знак плюс опускается). В ряде случаев приводят заряд ионов (для сложных по составу катионов и анионов), используя арабские цифры с соответствующим знаком.

Для распространенных многоэлементных катионов и анионов применяют следующие специальные названия:

H 2 F + - фтороний

C 2 2 - - ацетиленид

H 3 O + - оксоний

CN - - цианид

H 3 S + - сульфоний

CNO - - фульминат

NH 4 + - аммоний

HF 2 - - гидродифторид

N 2 H 5 + - гидразиний(1+)

HO 2 - - гидропероксид

N 2 H 6 + - гидразиний(2+)

HS - - гидросульфид

NH 3 OH + - гидроксиламиний

N 3 - - азид

NO + - нитрозил

NCS - - тиоционат

NO 2 + - нитроил

O 2 2 - - пероксид

O 2 + - диоксигенил

O 2 - - надпероксид

PH 4 + - фосфоний

O 3 - - озонид

VO 2 + - ванадил

OCN - - цианат

UO 2 + - уранил

OH - - гидроксид

Для небольшого числа хорошо известных веществ также используют специальные названия:

1. Кислотные и основные гидроксиды. Соли

Гидроксиды - тип сложных веществ, в состав которых входят атомы некоторого элемента Е (кроме фтора и кислорода) и гидроксогруппы ОН; общая формула гидроксидов Е(ОН) n , где n = 1÷6. Форма гидроксидов Е(ОН) n называется орто -формой; при n > 2 гидроксид может находиться также в мета -форме, включающей кроме атомов Е и групп ОН еще атомы кислорода О, например Е(ОН) 3 и ЕО(ОН), Е(ОН) 4 и Е(ОН) 6 и ЕО 2 (ОН) 2 .

Гидроксиды делят на две противоположные по химическим свойствам группы: кислотные и основные гидроксиды.

Кислотные гидроксиды содержат атомы водорода, которые могут замещаться на атомы металла при соблюдении правила стехиометрической валентности. Большинство кислотных гидроксидов находится в мета -форме, причем атомы водорода в формулах кислотных гидроксидов ставят на первое место, например H 2 SO 4 , HNO 3 и H 2 CO 3 , а не SO 2 (OH) 2 , NO 2 (OH) и CO(OH) 2 . Общая формула кислотных гидроксидов - Н х ЕО у , где электроотрицательную составляющую ЕО у х - называют кислотным остатком. Если не все атомы водорода замещены на металл, то они остаются в составе кислотного остатка.

Названия распространенных кислотных гидроксидов состоят из двух слов: собственного названия с окончанием "ая" и группового слова "кислота". Приведем формулы и собственные названия распространенных кислотных гидроксидов и их кислотных остатков (прочерк означает, что гидроксид не известен в свободном виде или в кислом водном растворе):

кислотный гидроксид

кислотный остаток

HAsO 2 - метамышьяковистая

AsO 2 - - метаарсенит

H 3 AsO 3 - ортомышьяковистая

AsO 3 3 - - ортоарсенит

H 3 AsO 4 - мышьяковая

AsO 4 3 - - арсенат

В 4 О 7 2 - - тетраборат

ВiО 3 - - висмутат

HBrO - бромноватистая

BrO - - гипобромит

HBrO 3 - бромноватая

BrO 3 - - бромат

H 2 CO 3 - угольная

CO 3 2 - - карбонат

HClO - хлорноватистая

ClO - - гипохлорит

HClO 2 - хлористая

ClO 2 - - хлорит

HClO 3 - хлорноватая

ClO 3 - - хлорат

HClO 4 - хлорная

ClO 4 - - перхлорат

H 2 CrO 4 - хромовая

CrO 4 2 - - хромат

НCrO 4 - - гидрохромат

H 2 Cr 2 О 7 - дихромовая

Cr 2 O 7 2 - - дихромат

FeO 4 2 - - феррат

HIO 3 - иодноватая

IO 3 - - иодат

HIO 4 - метаиодная

IO 4 - - метапериодат

H 5 IO 6 - ортоиодная

IO 6 5 - - ортопериодат

HMnO 4 - марганцовая

MnO 4 - - перманганат

MnO 4 2 - - манганат

MоO 4 2 - - молибдат

HNO 2 - азотистая

NO 2 - - нитрит

HNO 3 - азотная

NO 3 - - нитрат

HPO 3 - метафосфорная

PO 3 - - метафосфат

H 3 PO 4 - ортофосфорная

PO 4 3 - - ортофосфат

НPO 4 2 - - гидроортофосфат

Н 2 PO 4 - - дигидроотофосфат

H 4 P 2 O 7 - дифосфорная

P 2 O 7 4 - - дифосфат

ReO 4 - - перренат

SO 3 2 - - сульфит

HSO 3 - - гидросульфит

H 2 SO 4 - серная

SO 4 2 - - сульфат

НSO 4 - - гидросульфат

H 2 S 2 O 7 - дисерная

S 2 O 7 2 - - дисульфат

H 2 S 2 O 6 (O 2) - пероксодисерная

S 2 O 6 (O 2) 2 - - пероксодисульфат

H 2 SO 3 S - тиосерная

SO 3 S 2 - - тиосульфат

H 2 SeO 3 - селенистая

SeO 3 2 - - селенит

H 2 SeO 4 - селеновая

SeO 4 2 - - селенат

H 2 SiO 3 - метакремниевая

SiO 3 2 - - метасиликат

H 4 SiO 4 - ортокремниевая

SiO 4 4 - - ортосиликат

H 2 TeO 3 - теллуристая

TeO 3 2 - - теллурит

H 2 TeO 4 - метателлуровая

TeO 4 2 - - метателлурат

H 6 TeO 6 - ортотеллуровая

TeO 6 6 - - ортотеллурат

VO 3 - - метаванадат

VO 4 3 - - ортованадат

WO 4 3 - - вольфрамат

Менее распространенные кислотные гидроксиды называют по номенклатурным правилам для комплексных соединений, например:

Названия кислотных остатков используют при построении названий солей.

Основные гидроксиды содержат гидроксид-ионы, которые могут замещаться на кислотные остатки при соблюдении правила стехиометрической валентности. Все основные гидроксиды находятся в орто -форме; их общая формула М(ОН) n , где n = 1,2 (реже 3,4) и М n + - катион металла. Примеры формул и названий основных гидроксидов:

Важнейшим химическим свойством основных и кислотных гидроксидов является их взаимодействие их между собой с образованием солей (реакция солеобразования ), например:

Ca(OH) 2 + H 2 SO 4 = CaSO 4 + 2H 2 O

Ca(OH) 2 + 2H 2 SO 4 = Ca(HSO 4) 2 + 2H 2 O

2Ca(OH) 2 + H 2 SO 4 = Ca 2 SO 4 (OH) 2 + 2H 2 O

Соли - тип сложных веществ, в состав которых входят катионы М n + и кислотные остатки*.

Соли с общей формулой М х (ЕО у ) n называют средними солями, а соли с незамещенными атомами водорода, - кислыми солями. Иногда соли содержат в своем составе также гидроксид - или(и) оксид - ионы; такие соли называют основными солями. Приведем примеры и названия солей:

Ортофосфат кальция

Дигидроортофосфат кальция

Гидроортофосфат кальция

Карбонат меди(II)

Cu 2 CO 3 (OH) 2

Дигидроксид-карбонат димеди

Нитрат лантана(III)

Оксид-динитрат титана

Кислые и основные соли могут быть превращены в средние соли взаимодействием с соответствующим основным и кислотным гидроксидом, например:

Ca(HSO 4) 2 + Ca(OH) = CaSO 4 + 2H 2 O

Ca 2 SO 4 (OH) 2 + H 2 SO 4 = Ca 2 SO 4 + 2H 2 O

Встречаются также соли, содерхащие два разных катиона: их часто называют двойными солями , например:

2. Кислотные и оснόвные оксиды

Оксиды Е х О у - продукты полной дегидратации гидроксидов:

Кислотным гидроксидам (H 2 SO 4 , H 2 CO 3) отвечают кислотные оксиды (SO 3 , CO 2), а основным гидроксидам (NaOH, Ca(OH) 2) - основные оксиды (Na 2 O, CaO), причем степень окисления элемента Е не изменяется при переходе от гидроксида к оксиду. Пример формул и названий оксидов:

Кислотные и основные оксиды сохраняют солеобразующие свойства соответствующих гидроксидов при взаимодействии с противоположными по свойствам гидроксидами или между собой:

N 2 O 5 + 2NaOH = 2NaNO 3 + H 2 O

3CaO + 2H 3 PO 4 = Ca 3 (PO 4) 2 + 3H 2 O

La 2 O 3 + 3SO 3 = La 2 (SO 4) 3

3. Амфотерные оксиды и гидроксиды

Амфотерность гидроксидов и оксидов - химическое свойство, заключающееся в образовании ими двух рядов солей, например, для гидроксида и оксида алюминия:

(а) 2Al(OH) 3 + 3SO 3 = Al 2 (SO 4) 3 + 3H 2 O

Al 2 O 3 + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 O

(б) 2Al(OH) 3 + Na 2 O = 2NaAlO 2 + 3H 2 O

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O

Так, гидроксид и оксид алюминия в реакциях (а) проявляют свойства основных гидроксидов и оксидов, т.е. реагируют с кислотными гидроксидам и оксидом, образуя соответствующую соль - сульфат алюминия Al 2 (SO 4) 3 , тогда как в реакциях (б) они же проявляют свойства кислотных гидроксидов и оксидов, т.е. реагируют с основными гидроксидом и оксидом, образуя соль - диоксоалюминат (III) натрия NaAlO 2 . В первом случае элемент алюминий проявляет свойство металла и входит в состав электроположительной составляющей (Al 3+), во втором - свойство неметалла и входит в состав электроотрицательной составляющей формулы соли (AlO 2 -).

Если указанные реакции протекают в водном растворе, то состав образующихся солей меняется, но присутствие алюминия в катионе и анионе остаётся:

2Al(OH) 3 + 3H 2 SO 4 = 2 (SO 4) 3

Al(OH) 3 + NaOH = Na

Здесь квадратными скобками выделены комплексные ионы 3+ - катион гексаакваалюминия(III), - - тетрагидроксоалюминат(III)-ион.

Элементы, проявляющие в соединениях металлические и неметаллические свойства, называют амфотерными, к ним относятся элементы А-групп Периодической системы - Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп - Cr, Mn, Fe, Zn, Cd, Au и др. Амфотерные оксиды называют так же, как и основные, например:

Амфотерные гидроксиды (если степень окисления элемента превышает + II) могут находиться в орто - или (и) мета - форме. Приведем примеры амфотерных гидроксидов:

Амфотерным оксидам не всегда соответствуют амфотерные гидроксиды, поскольку при попытке получения последних образуются гидратированные оксиды, например:

Если амфотерному элементу в соединениях отвечает несколько степеней окисления, то амфотерность соответствующих оксидов и гидроксидов (а следовательно, и амфотерность самого элемента) будет выражена по-разному. Для низких степеней окисления у гидроксидов и оксидов наблюдается преобладание основных свойств, а у самого элемента - металлических свойств, поэтому он почти всегда входит в состав катионов. Для высоких степеней окисления, напротив, у гидроксидов и оксидов наблюдается преобладание кислотных свойств, а у самого элемента - неметаллических свойств, поэтому он почти всегда входит в состав анионов. Так, у оксида и гидроксида марганца(II) доминируют основные свойства, а сам марганец входит в состав катионов типа 2+ , тогда как у оксида и гидроксида марганца(VII) доминируют кислотные свойства, а сам марганец входит в состав аниона типа MnO 4 - . Амфотерным гидроксидам с большим преобладанием кислотных свойств приписывают формулы и названия по образцу кислотных гидроксидов, например НMn VII O 4 - марганцовая кислота.

Таким образом, деление элементов на металлы и неметаллы - условное; между элементами (Na, K, Ca, Ba и др.) с чисто металлическими и элементами (F, O, N, Cl, S, C и др.) с чисто неметаллическими свойствами существует большая группа элементов с амфотерными свойствами.

4. Бинарные соединения

Обширный тип неорганических сложных веществ - бинарные соединения. К ним относятся, в первую очередь все двухэлементные соединения (кроме основных, кислотных и амфотерных оксидов), например H 2 O, KBr, H 2 S, Cs 2 (S 2), N 2 O, NH 3 , HN 3 , CaC 2 , SiH 4 . Электроположительная и электроотрицательная составляющие формул этих соединений включают отдельные атомы или связанные группы атомов одного элемента.

Многоэлементные вещества, в формулах которых одна из составляющих содержит не связанные между собой атомы нескольких элементов, а также одноэлементные или многоэлементные группы атомов (кроме гидроксидов и солей), рассматривают как бинарные соединения, например CSO, IO 2 F 3 , SBrO 2 F, CrO(O 2) 2 , PSI 3 , (CaTi)O 3 , (FeCu)S 2 , Hg(CN) 2 , (PF 3) 2 O, VCl 2 (NH 2). Так, CSO можно представить как соединение CS 2 , в котором один атом серы заменен на атом кислорода.

Названия бинарных соединений строятся по обычным номенклатурным правилам, например:

OF 2 - дифторид кислорода

K 2 O 2 - пероксид калия

HgCl 2 - хлорид ртути(II)

Na 2 S - сульфид натрия

Hg 2 Cl 2 - дихлорид диртути

Mg 3 N 2 - нитрид магния

SBr 2 O - оксид-дибромид серы

NH 4 Br - бромид аммония

N 2 O - оксид диазота

Pb(N 3) 2 - азид свинца(II)

NO 2 - диоксид азота

CaC 2 - ацетиленид кальция

Для некоторых бинарных соединений используют специальные названия, список которых был приведен ранее.

Химические свойства бинарных соединений довольно разнообразны, поэтому их часто разделяют на группы по названию анионов, т.е. отдельно рассматривают галогениды, халькогениды, нитриды, карбиды, гидриды и т. д. Среди бинарных соединений встречаются и такие, которые имеют некоторые признаки других типов неорганических веществ. Так, соединения CO, NO, NO 2 , и (Fe II Fe 2 III)O 4 , названия которых строятся с применением слова оксид, к типу оксидов (кислотных, основных, амфотерных) отнесены быть не могут. Монооксид углерода СО, монооксид азота NO и диоксид азота NO 2 не имеют соответствующих кислотных гидроксидов (хотя эти оксиды образованы неметаллами С и N), не образуют они и солей, в состав анионов которых входили бы атомы С II , N II и N IV . Двойной оксид (Fe II Fe 2 III)O 4 - оксид дижелеза(III)-железа(II) хотя и содержит в составе электроположительной составляющей атомы амфотерного элемента - железа, но в двух разных степенях окисления, вследствие чего при взаимодействии с кислотными гидроксидами образует не одну, а две разные соли.

Такие бинарные соединения, как AgF, KBr, Na 2 S, Ba(HS) 2 , NaCN, NH 4 Cl, и Pb(N 3) 2 , построены, подобно солям, из реальных катионов и анионов, поэтому их называют солеобразными бинарными соединениями (или просто солями). Их можно рассматривать как продукты замещения атомов водорода в соединениях НF, НCl, НBr, Н 2 S, НCN и НN 3 . Последние в водном растворе обладают кислотной функцией, и поэтому их растворы называют кислотами, например НF(aqua) - фтороводородная кислота, Н 2 S(aqua) - сероводородная кислота. Однако они не принадлежат к типу кислотных гидроксидов, а их производные - к солям в рамках классификации неорганических веществ.

Классификация неорганических веществ с примерами соединений

Теперь проанализируем представленную выше классификационную схему более детально.

Как мы видим, прежде всего все неорганические вещества делятся на простые и сложные :

Простыми веществами называют такие вещества, которые образованы атомами только одного химического элемента. Например, простыми веществами являются водород H 2 , кислород O 2 , железо Fe, углерод С и т.д.

Среди простых веществ различают металлы , неметаллы и благородные газы:

Металлы образованы химическими элементами, расположенными ниже диагонали бор-астат, а также всеми элементами, находящимися в побочных группах.

Благородные газы образованы химическими элементами VIIIA группы.

Неметаллы образованы соответственно химическими элементами, расположенными выше диагонали бор-астат, за исключением всех элементов побочных подгрупп и благородных газов, расположенных в VIIIA группе:

Названия простых веществ чаще всего совпадают с названиями химических элементов, атомами которых они образованы. Однако для многих химических элементов широко распространено такое явление, как аллотропия. Аллотропией называют явление, когда один химический элемент способен образовывать несколько простых веществ. Например, в случае химического элемента кислорода возможно существование молекулярных соединений с формулами O 2 и O 3 . Первое вещество принято называть кислородом так же, как и химический элемент, атомами которого оно образовано, а второе вещество (O 3) принято называть озоном. Под простым веществом углеродом может подразумеваться любая из его аллотропных модификаций, например, алмаз, графит или фуллерены. Под простым веществом фосфором могут пониматься такие его аллотропные модификации, как белый фосфор, красный фосфор, черный фосфор.

Сложные вещества

Сложными веществами называют вещества, образованные атомами двух или более химических элементов.

Так, например, сложными веществами являются аммиак NH 3 , серная кислота H 2 SO 4 , гашеная известь Ca(OH) 2 и бесчисленное множество других.

Среди сложных неорганических веществ выделяют 5 основных классов, а именно оксиды, основания, амфотерные гидроксиды, кислоты и соли:

Оксиды — сложные вещества, образованные двумя химическими элементами, один из которых кислород в степени окисления -2.

Общая формула оксидов может быть записана как Э x O y , где Э — символ какого-либо химического элемента.

Номенклатура оксидов

Название оксида химического элемента строится по принципу:

Например:

Fe 2 O 3 — оксид железа (III); CuO — оксид меди (II); N 2 O 5 — оксид азота (V)

Нередко можно встретить информацию о том, что в скобках указывается валентность элемента, однако же это не так. Так, например, степень окисления азота N 2 O 5 равна +5, а валентность, как это ни странно, равна четырем.

В случае, если химический элемент имеет единственную положительную степень окисления в соединениях, в таком случае степень окисления не указывается. Например:

Na 2 O — оксид натрия; H 2 O — оксид водорода; ZnO — оксид цинка.

Классификация оксидов

Оксиды по их способности образовывать соли при взаимодействии с кислотами или основаниями подразделяют соответственно на солеобразующие и несолеобразующие .

Несолеобразующих оксидов немного, все они образованы неметаллами в степени окисления +1 и +2. Список несолеобразующих оксидов следует запомнить: CO, SiO, N 2 O, NO.

Солеобразующие оксиды в свою очередь подразделяются на основные , кислотные и амфотерные .

Основными оксидами называют такие оксиды, которые при взаимодействии с кислотами (или кислотными оксидами) образуют соли. К основным оксидам относят оксиды металлов в степени окисления +1 и +2, за исключением оксидов BeO, ZnO, SnO, PbO.

Кислотными оксидами называют такие оксиды, которые при взаимодействии с основаниями (или основными оксидами) образуют соли. Кислотными оксидами являются практически все оксиды неметаллов за исключением несолеобразующих CO, NO, N 2 O, SiO, а также все оксиды металлов в высоких степенях окисления (+5, +6 и +7).

Амфотерными оксидами называют оксиды, которые могут реагировать как с кислотами, так и основаниями, и в результате этих реакций образуют соли. Такие оксиды проявляют двойственную кислотно-основную природу, то есть могут проявлять свойства как кислотных, так и основных оксидов. К амфотерным оксидам относятся оксиды металлов в степенях окисления +3, +4, а также в качестве исключений оксиды BeO, ZnO, SnO, PbO.

Некоторые металлы могут образовывать все три вида солеобразующих оксидов. Например, хром образует основный оксид CrO, амфотерный оксид Cr 2 O 3 и кислотный оксид CrO 3 .

Как можно видеть, кислотно-основные свойства оксидов металлов напрямую зависят от степени окисления металла в оксиде: чем больше степень окисления, тем сильнее выражены кислотные свойства.

Основания

Основания — соединения с формулой вида Me(OH) x , где x чаще всего равен 1 или 2.

Классификация оснований

Основания классифицируют по количеству гидроксогрупп в одной структурной единице.

Основания с одной гидроксогруппой, т.е. вида MeOH, называют однокислотными основаниями, с двумя гидроксогруппами, т.е. вида Me(OH) 2 , соответственно, двухкислотными и т.д.

Также основания подразделяют на растворимые (щелочи) и нерастворимые.

К щелочам относятся исключительно гидроксиды щелочных и щелочно-земельных металлов, а также гидроксид таллия TlOH.

Номенклатура оснований

Название основания строится по нижеследующему принципу:

Например:

Fe(OH) 2 — гидроксид железа (II),

Cu(OH) 2 — гидроксид меди (II).

В тех случаях, когда металл в сложных веществах имеет постоянную степень окисления, указывать её не требуется. Например:

NaOH — гидроксид натрия,

Ca(OH) 2 — гидроксид кальция и т.д.

Кислоты

Кислоты — сложные вещества, молекулы которых содержат атомы водорода, способные замещаться на металл.

Общая формула кислот может быть записана как H x A, где H — атомы водорода, способные замещаться на металл, а A — кислотный остаток.

Например, к кислотам относятся такие соединения, как H 2 SO 4 , HCl, HNO 3 , HNO 2 и т.д.

Классификация кислот

По количеству атомов водорода, способных замещаться на металл, кислоты делятся на:

— одноосновные кислоты : HF, HCl, HBr, HI, HNO 3 ;

— двухосновные кислоты : H 2 SO 4 , H 2 SO 3 , H 2 CO 3 ;

— трехосновные кислоты : H 3 PO 4 , H 3 BO 3 .

Следует отметить, что количество атомов водорода в случае органических кислот чаще всего не отражает их основность. Например, уксусная кислота с формулой CH 3 COOH, несмотря на наличие 4-х атомов водорода в молекуле, является не четырех-, а одноосновной. Основность органических кислот определяется количеством карбоксильных групп (-COOH) в молекуле.

Также по наличию кислорода в молекулах кислоты подразделяют на бескислородные (HF, HCl, HBr и т.д.) и кислородсодержащие (H 2 SO 4 , HNO 3 , H 3 PO 4 и т.д.). Кислородсодержащие кислоты называют также оксокислотами .

Более детально про классификацию кислот можно почитать .

Номенклатура кислот и кислотных остатков

Нижеследующий список названий и формул кислот и кислотных остатков обязательно следует выучить.

В некоторых случаях облегчить запоминание может ряд следующих правил.

Как можно видеть из таблицы выше, построение систематических названий бескислородных кислот выглядит следующим образом:

Например:

HF — фтороводородная кислота;

HCl — хлороводородная кислота;

H 2 S — сероводородная кислота.

Названия кислотных остатков бескислородных кислот строятся по принципу:

Например, Cl — — хлорид, Br — — бромид.

Названия кислородсодержащих кислот получают добавлением к названию кислотообразующего элемента различных суффиксов и окончаний. Например, если кислотообразующий элемент в кислородсодержащей кислоте имеет высшую степень окисления, то название такой кислоты строится следующим образом:

Например, серная кислота H 2 S +6 O 4 , хромовая кислота H 2 Cr +6 O 4 .

Все кислородсодержащие кислоты могут быть также классифицированы как кислотные гидроксиды, поскольку в их молекулах обнаруживаются гидроксогруппы (OH). Например, это видно из нижеследующих графических формул некоторых кислородсодержащих кислот:

Таким образом, серная кислота иначе может быть названа как гидроксид серы (VI), азотная кислота — гидроксид азота (V), фосфорная кислота — гидроксид фосфора (V) и т.д. При этом число в скобках характеризует степень окисления кислотообразующего элемента. Такой вариант названий кислородсодержащих кислот многим может показаться крайне непривычным, однако же изредка такие названия можно встретить в реальных КИМах ЕГЭ по химии в заданиях на классификацию неорганических веществ.

Амфотерные гидроксиды

Амфотерные гидроксиды — гидроксиды металлов, проявляющие двойственную природу, т.е. способные проявлять как свойства кислот, так и свойства оснований.

Амфотерными являются гидроксиды металлов в степенях окисления +3 и +4 (как и оксиды).

Также в качестве исключений к амфотерным гидроксидам относят соединения Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 и Pb(OH) 2 , несмотря на степень окисления металла в них +2.

Для амфотерных гидроксидов трех- и четырехвалентных металлов возможно существование орто- и мета-форм, отличающихся друг от друга на одну молекулу воды. Например, гидроксид алюминия (III) может существовать в орто-форме Al(OH) 3 или мета-форме AlO(OH) (метагидроксид).

Поскольку, как уже было сказано, амфотерные гидроксиды проявляют как свойства кислот, так и свойства оснований, их формула и название также могут быть записаны по-разному: либо как у основания, либо как у кислоты. Например:

Соли

Так, например, к солям относятся такие соединения как KCl, Ca(NO 3) 2 , NaHCO 3 и т.д.

Представленное выше определение описывает состав большинства солей, однако же существуют соли, не попадающие под него. Например, вместо катионов металлов в состав соли могут входить катионы аммония или его органические производные. Т.е. к солям относятся такие соединения, как, например, (NH 4) 2 SO 4 (сульфат аммония), + Cl — (хлорид метиламмония) и т.д.

Классификация солей

С другой стороны, соли можно рассматривать как продукты замещения катионов водорода H + в кислоте на другие катионы или же как продукты замещения гидроксид-ионов в основаниях (или амфотерных гидроксидах) на другие анионы.

При полном замещении образуются так называемые средние или нормальные соли. Например, при полном замещении катионов водорода в серной кислоте на катионы натрия образуется средняя (нормальная) соль Na 2 SO 4 , а при полном замещении гидроксид-ионов в основании Ca(OH) 2 на кислотные остатки нитрат-ионы образуется средняя (нормальная) соль Ca(NO 3) 2 .

Соли, получаемые неполным замещением катионов водорода в двухосновной (или более) кислоте на катионы металла, называют кислыми. Так, при неполном замещении катионов водорода в серной кислоте на катионы натрия образуется кислая соль NaHSO 4 .

Соли, которые образуются при неполном замещении гидроксид-ионов в двухкислотных (или более) основаниях, называют осно вными солями. Например, при неполном замещении гидроксид-ионов в основании Ca(OH) 2 на нитрат-ионы образуется осно вная соль Ca(OH)NO 3 .

Соли, состоящие из катионов двух разных металлов и анионов кислотных остатков только одной кислоты, называют двойными солями . Так, например, двойными солями являются KNaCO 3 , KMgCl 3 и т.д.

Если соль образована одним типом катионов и двумя типами кислотных остатков, такие соли называют смешанными. Например, смешанными солями являются соединения Ca(OCl)Cl, CuBrCl и т.д.

Существуют соли, которые не попадают под определение солей как продуктов замещения катионов водорода в кислотах на катионы металлов или продуктов замещения гидроксид-ионов в основаниях на анионы кислотных остатков. Это — комплексные соли. Так, например, комплексными солями являются тетрагидроксоцинкат- и тетрагидроксоалюминат натрия с формулами Na 2 и Na соответственно. Распознать комплексные соли среди прочих чаще всего можно по наличию квадратных скобок в формуле. Однако нужно понимать, что, чтобы вещество можно было отнести к классу солей, в его состав должны входить какие-либо катионы, кроме (или вместо) H + , а из анионов должны быть какие-либо анионы помимо (или вместо) OH — . Так, например, соединение H 2 не относится к классу комплексных солей, поскольку при его диссоциации из катионов в растворе присутствуют только катионы водорода H + . По типу диссоциации данное вещество следует скорее классифицировать как бескислородную комплексную кислоту. Аналогично, к солям не относится соединение OH, т.к. данное соединение состоит из катионов + и гидроксид-ионов OH — , т.е. его следует считать комплексным основанием.

Номенклатура солей

Номенклатура средних и кислых солей

Название средних и кислых солей строится по принципу:

Если степень окисления металла в сложных веществах постоянная, то ее не указывают.

Названия кислотных остатков были даны выше при рассмотрении номенклатуры кислот.

Например,

Na 2 SO 4 — сульфат натрия;

NaHSO 4 — гидросульфат натрия;

CaCO 3 — карбонат кальция;

Ca(HCO 3) 2 — гидрокарбонат кальция и т.д.

Номенклатура основных солей

Названия основных солей строятся по принципу:

Например:

(CuOH) 2 CO 3 — гидроксокарбонат меди (II);

Fe(OH) 2 NO 3 — дигидроксонитрат железа (III).

Номенклатура комплексных солей

Номенклатура комплексных соединений значительно сложнее, и для сдачи ЕГЭ многого знать из номенклатуры комплексных солей не нужно.

Следует уметь называть комплексные соли, получаемые взаимодействием растворов щелочей с амфотерными гидроксидами. Например:

*Одинаковыми цветами в формуле и названии обозначены соответствующие друг другу элементы формулы и названия.

Тривиальные названия неорганических веществ

Под тривиальными названиями понимают названия веществ не связанные, либо слабо связанные с их составом и строением. Тривиальные названия обусловлены, как правило, либо историческими причинами либо физическими или химическими свойствами данных соединений.

Список тривиальных названий неорганических веществ, которые необходимо знать:

Na 3 криолит
SiO 2 кварц, кремнезем
FeS 2 пирит, железный колчедан
CaSO 4 ∙2H 2 O гипс
CaC2 карбид кальция
Al 4 C 3 карбид алюминия
KOH едкое кали
NaOH едкий натр, каустическая сода
H 2 O 2 перекись водорода
CuSO 4 ∙5H 2 O медный купорос
NH 4 Cl нашатырь
CaCO 3 мел, мрамор, известняк
N 2 O веселящий газ
NO 2 бурый газ
NaHCO 3 пищевая (питьевая) сода
Fe 3 O 4 железная окалина
NH 3 ∙H 2 O (NH 4 OH) нашатырный спирт
CO угарный газ
CO 2 углекислый газ
SiC карборунд (карбид кремния)
PH 3 фосфин
NH 3 аммиак
KClO 3 бертолетова соль (хлорат калия)
(CuOH) 2 CO 3 малахит
CaO негашеная известь
Ca(OH) 2 гашеная известь
прозрачный водный раствор Ca(OH) 2 известковая вода
взвесь твердого Ca(OH) 2 в его водном растворе известковое молоко
K 2 CO 3 поташ
Na 2 CO 3 кальцинированная сода
Na 2 CO 3 ∙10H 2 O кристаллическая сода
MgO жженая магнезия