Распределение случайной величины имеет вид. Закон распределения случайных величин. Свойства плотности распределения

Примерами случайных величин, распределённых по нормальному закону, являются рост человека, масса вылавливаемой рыбы одного вида . Нормальность распределения означает следующее : существуют значения роста человека, массы рыбы одного вида, которые на интуитивном уровне воспринимаются как "нормальные" (а по сути - усреднённые), и они-то в достаточно большой выборке встречаются гораздо чаще, чем отличающиеся в бОльшую или меньшую сторону.

Нормальное распределение вероятностей непрерывной случайной величины (иногда - распределение Гаусса) можно назвать колоколообразным из-за того, что симметричная относительно среднего функция плотности этого распределения очень похожа на разрез колокола (красная кривая на рисунке выше).

Вероятность встретить в выборке те или иные значение равна площади фигуры под кривой и в случае нормального распределения мы видим, что под верхом "колокола", которому соответствуют значения, стремящиеся к среднему, площадь, а значит, вероятность, больше, чем под краями. Таким образом, получаем то же, что уже сказано: вероятность встретить человека "нормального" роста, поймать рыбу "нормальной" массы выше, чем для значений, отличающихся в бОльшую или меньшую сторону. В очень многих случаях практики ошибки измерения распределяются по закону, близкому к нормальному.

Остановимся ещё раз на рисунке в начале урока, на котором представлена функция плотности нормального распределения. График этой функции получен при рассчёте некоторой выборки данных в пакете программных средств STATISTICA . На ней столбцы гистограммы представляют собой интервалы значений выборки, распределение которых близко (или, как принято говорить в статистике, незначимо отличаются от) к собственно графику функции плотности нормального распределения, который представляет собой кривую красного цвета. На графике видно, что эта кривая действительно колоколообразная.

Нормальное распределение во многом ценно благодаря тому, что зная только математическое ожидание непрерывной случайной величины и стандартное отклонение, можно вычислить любую вероятность, связанную с этой величиной.

Нормальное распределение имеет ещё и то преимущество, что один из наиболее простых в использовании статистических критериев, используемых для проверки статистических гипотез - критерий Стьюдента - может быть использован только в том случае, когда данные выборки подчиняются нормальному закону распределения.

Функцию плотности нормального распределения непрерывной случайной величины можно найти по формуле:

,

где x - значение изменяющейся величины, - среднее значение, - стандартное отклонение, e =2,71828... - основание натурального логарифма, =3,1416...

Свойства функции плотности нормального распределения

Изменения среднего значения перемещают кривую функции плотности нормального распределения в направлении оси Ox . Если возрастает, кривая перемещается вправо, если уменьшается, то влево.

Если меняется стандартное отклонение, то меняется высота вершины кривой. При увеличении стандартного отклонения вершина кривой находится выше, при уменьшении - ниже.

Вероятность попадания значения нормально распределённой случайной величины в заданный интервал

Уже в этом параграфе начнём решать практические задачи, смысл которых обозначен в заголовке. Разберём, какие возможности для решения задач предоставляет теория. Отправное понятие для вычисления вероятности попадания нормально распределённой случайной величины в заданный интервал - интегральная функция нормального распределения.

Интегральная функция нормального распределения :

.

Однако проблематично получить таблицы для каждой возможной комбинации среднего и стандартного отклонения. Поэтому одним из простых способов вычисления вероятности попадания нормально распределённой случайной величины в заданный интервал является использование таблиц вероятностей для стандартизированного нормального распределения.

Стандартизованным или нормированным называется нормальное распределение , среднее значение которого , а стандартное отклонение .

Функция плотности стандартизованного нормального распределения :

.

Интегральная функция стандартизованного нормального распределения :

.

На рисунке ниже представлена интегральная функция стандартизованного нормального распределения, график которой получен при рассчёте некоторой выборки данных в пакете программных средств STATISTICA . Собственно график представляет собой кривую красного цвета, а значения выборки приближаются к нему.


Для увеличения рисунка можно щёлкнуть по нему левой кнопкой мыши.

Стандартизация случайной величины означает переход от первоначальных единиц, используемых в задании, к стандартизованным единицам. Стандартизация выполняется по формуле

На практике все возможные значения случайной величины часто не известны, поэтому значения среднего и стандартного отклонения точно определить нельзя. Их заменяют средним арифметическим наблюдений и стандартным отклонением s . Величина z выражает отклонения значений случайной величины от среднего арифметического при измерении стандартных отклонений.

Открытый интервал

Таблица вероятностей для стандартизированного нормального распределения, которая есть практически в любой книге по статистике, содержит вероятности того, что имеющая стандартное нормальное распределение случайная величина Z примет значение меньше некоторого числа z . То есть попадёт в открытый интервал от минус бесконечности до z . Например, вероятность того, что величина Z меньше 1,5, равна 0,93319.

Пример 1. Предприятие производит детали, срок службы которых нормально распределён со средним значением 1000 и стандартным отклонением 200 часов.

Для случайно отобранной детали вычислить вероятность того, что её срок службы будет не менее 900 часов.

Решение. Введём первое обозначение:

Искомая вероятность.

Значения случайной величины находятся в открытом интервале. Но мы умеем вычислять вероятность того, что случайная величина примет значение, меньшее заданного, а по условию задачи требуется найти равное или большее заданного. Это другая часть пространства под кривой плотности нормального распределения (колокола). Поэтому, чтобы найти искомую вероятность, нужно из единицы вычесть упомянутую вероятность того, что случайная величина примет значение, меньше заданного 900:

Теперь случайную величину нужно стандартизировать.

Продолжаем вводить обозначения:

z = (X ≤ 900) ;

x = 900 - заданное значение случайной величины;

μ = 1000 - среднее значение;

σ = 200 - стандартное отклонение.

По этим данным условия задачи получаем:

.

По таблицам стандартизированной случайной величине (границе интервала) z = −0,5 соответствует вероятность 0,30854. Вычтем ее из единицы и получим то, что требуется в условии задачи:

Итак, вероятность того, что срок службы детали будет не менее 900 часов, составляет 69%.

Эту вероятность можно получить, используя функцию MS Excel НОРМ.РАСП (значение интегральной величины - 1):

P (X ≥900) = 1 - P (X ≤900) = 1 - НОРМ.РАСП(900; 1000; 200; 1) = 1 - 0,3085 = 0,6915.

О расчётах в MS Excel - в одном из последующих параграфах этого урока.

Пример 2. В некотором городе среднегодовой доход семьи является нормально распределённой случайной величиной со средним значением 300000 и стандартным отклонением 50000. Известно, что доходы 40 % семей меньше величины A . Найти величину A .

Решение. В этой задаче 40 % - ни что иное, как вероятность того, что случайная величина примет значение из открытого интервала, меньшее определённого значения, обозначенного буквой A .

Чтобы найти величину A , сначала составим интегральную функцию:

По условию задачи

μ = 300000 - среднее значение;

σ = 50000 - стандартное отклонение;

x = A - величина, которую нужно найти.

Составляем равенство

.

По статистическим таблицам находим, что вероятность 0,40 соответствует значению границы интервала z = −0,25 .

Поэтому составляем равенство

и находим его решение:

A = 287300 .

Ответ: доходы 40 % семей менее 287300.

Закрытый интервал

Во многих задачах требуется найти вероятность того, что нормально распределённая случайная величина примет значение в интервале от z 1 до z 2 . То есть попадёт в закрытый интервал. Для решения таких задач необходимо найти в таблице вероятности, соответствующие границам интервала, а затем найти разность этих вероятностей. При этом требуется вычитать меньшее значение из большего. Примеры на решения этих распространённых задач - следующие, причём решить их предлагается самостоятельно, а затем можно посмотреть правильные решения и ответы.

Пример 3. Прибыль предприятия за некоторый период - случайная величина, подчинённая нормальному закону распределения со средним значением 0,5 млн. у.е. и стандартным отклонением 0,354. Определить с точностью до двух знаков после запятой вероятность того, что прибыль предприятия составит от 0,4 до 0,6 у.е.

Пример 4. Длина изготавливаемой детали представляет собой случайную величину, распределённую по нормальному закону с параметрами μ =10 и σ =0,071 . Найти с точностью до двух знаков после запятой вероятность брака, если допустимые размеры детали должны быть 10±0,05 .

Подсказка: в этой задаче помимо нахождения вероятности попадания случайной величины в закрытый интервал (вероятность получения небракованной детали) требуется выполнить ещё одно действие.

позволяет определить вероятность того, что стандартизованное значение Z не меньше -z и не больше +z , где z - произвольно выбранное значение стандартизованной случайной величины.

Приближенный метод проверки нормальности распределения

Приближенный метод проверки нормальности распределения значений выборки основан на следующем свойстве нормального распределения: коэффициент асимметрии β 1 и коэффициент эксцесса β 2 равны нулю .

Коэффициент асимметрии β 1 численно характеризует симметрию эмпирического распределения относительно среднего. Если коэффициент асимметрии равен нулю, то среднее арифметрического значение, медиана и мода равны: и кривая плотности распределения симметрична относительно среднего. Если коэффициент асимметрии меньше нуля (β 1 < 0 ), то среднее арифметическое меньше медианы, а медиана, в свою очередь, меньше моды () и кривая сдвинута вправо (по сравнению с нормальным распределением) . Если коэффициент асимметрии больше нуля (β 1 > 0 ), то среднее арифметическое больше медианы, а медиана, в свою очередь, больше моды () и кривая сдвинута влево (по сравнению с нормальным распределением) .

Коэффициент эксцесса β 2 характеризует концентрацию эмпирического распределения вокруг арифметического среднего в направлении оси Oy и степень островершинности кривой плотности распределения. Если коэффициент эксцесса больше нуля, то кривая более вытянута (по сравнению с нормальным распределением) вдоль оси Oy (график более островершинный). Если коэффициент эксцесса меньше нуля, то кривая более сплющена (по сравнению с нормальным распределением) вдоль оси Oy (график более туповершинный).

Коэффициент асимметрии можно вычислить с помощью функции MS Excel СКОС. Если вы проверяете один массив данных, то требуется ввести диапазон данных в одно окошко "Число".


Коэффициент эксцесса можно вычислить с помощью функции MS Excel ЭКСЦЕСС. При проверке одного массива данных также достаточно ввести диапазон данных в одно окошко "Число".


Итак, как мы уже знаем, при нормальном распределении коэффициенты асимметрии и эксцесса равны нулю. Но что, если мы получили коэффициенты асимметрии, равные -0,14, 0,22, 0,43, а коэффициенты эксцесса, равные 0,17, -0,31, 0,55? Вопрос вполне справедливый, так как практически мы имеем дело лишь с приближенными, выборочными значениями асимметрии и эксцесса, которые подвержены некоторому неизбежному, неконтролируемому разбросу. Поэтому нельзя требовать строгого равенства этих коэффициентов нулю, они должны лишь быть достаточно близкими к нулю. Но что значит - достаточно?

Требуется сравнить полученные эмпирические значения с допустимыми значениями. Для этого нужно проверить следующие неравенства (сравнить значения коэффициентов по модулю с критическими значениями - границами области проверки гипотезы).

Для коэффициента асимметрии β 1 .

Правило трёх сигм.

Подставим значение? в формулу (*), получим:

Итак, с вероятностью сколь угодно близкой к единице можно утверждать, что модуль отклонения нормально распределенной случайной величины от её математического ожидания не превосходит утроенного среднего квадратического отклонения.

Центральная предельная теорема.

Центральная предельная теорема представляет собой группу теорем, посвященных установлению условий, при которых возникает нормальный закон распределения. Среди этих теорем важнейшее место принадлежит теореме Ляпунова.

Если случайная величина Х представляет собой сумму большого числа взаимно? независимых случайных величин, то есть, влияние каждой из которых на всю сумму ничтожно мало, то случайная величинаХ имеет распределение, неограниченно приближающееся к нормальному распределению.

Начальные и центральные моменты непрерывной случайной величины, асимметрия и эксцесс. Мода и медиана.

В прикладных задачах, например в математической ста­тистике, при теоретическом изучении эмпирических распре­делений, отличающихся от нормального распределения, воз­никает необходимость количественных оценок этих различий. Для этой цели введены специальные безразмерные характеристики.

Определение. Мода непрерывной случайной величины (Мо (X )) – это её наиболее вероятное значение, для которого вероятность p i или плотность вероятности f(x) достигает максимума.

Определение. Медиана непрерывной случайной величины X (Me (X )) – это такое её значение, для которого выполняется равенство:

Геометрически вертикальная прямая x = Me (X) делит площадь фигуры под кривой на две равные части.

В точке X = Me (X), функция распределения F (Me (X)) =

Найти моду Mo, медиану Me и математическое ожидание M случайной величины X с плотностью вероятности f(x) = 3x 2 , при x I [ 0; 1 ].

Плотность вероятности f (x) максимальна при x = 1, т.е. f (1) = 3, следовательно, Mo (X) = 1 на интервале [ 0; 1 ].

Для нахождения медианы обозначим Me (X) = b.

Так как Me (X) удовлетворяет условию P (X 3 = .

b 3 = ; b = » 0,79

M (X) = =+=

Отметим получившиеся 3 значения Mo (x), Me (X), M (X) на оси Ox:

Определение. Асимметрией теоретического распределения называется отношение центрального момента третьего поряд­ка к кубу среднего квадратического отклонения:

Определение. Эксцессом теоретического распределения на­зывается величина, определяемая равенством:

где ? центральный момент четвертого порядка.

Для нормального распределения . При отклоне­нии от нормального распределения асимметрия положительна, если «длинная» и более пологая часть кривой распределения расположена справа от точки на оси абсцисс, соответствую­щей моде; если эта часть кривой расположена слева от моды, то асимметрия отрицательна (рис. 1, а, б).

Эксцесс характеризует «крутизну» подъема кривой распре­деления по сравнению с нормальной кривой: если эксцесс поло­жителен, то кривая имеет более высокую и острую вершину; в случае отрицательного эксцесса сравниваемая кривая имеет более низкую и пологую вершину.

Следует иметь в виду, что при использовании указанных характеристик сравнения опорными являются предположения об одинаковых величинах математического ожидания и дис­персии для нормального и теоретического распределений.

Пример. Пусть дискретная случайная величина Х задана законом распределения:

Найти: асимметрию и эксцесс теоретического распределения.

Найдем сначала математическое ожидание слу­чайной величины:

Затем вычисляем начальные и центральные моменты 2, 3 и 4-го порядков и :

Теперь по формулам находим искомые вели­чины:

В данном случае «длинная» часть кривой распределения рас­положена справа от моды, причем сама кривая является не­сколько более островершинной, чем нормальная кривая с теми же величинами математического ожидания и дисперсии.

Теорема. Для произвольной случайной величины Х и любого числа

?>0 справедливы неравенства:

Вероятность противоположного неравенства.

Средний расход воды на животноводческой ферме составляет 1000 л в день, а среднее квадратичное отклонение этой случайной величины не превышает 200 л. Оценить вероятность того, что расход воды на ферме в любой выбранный день не превзойдет 2000 л, используя неравенство Чебышева.

Пусть X –расход воды на животноводческой ферме (л).

Дисперсия D (X ) = . Так как границы интервала 0X 2000 симметричны относительно математического ожиданияМ (Х ) = 1000, то для оценки вероятности искомого события можно применить неравенство Чебышева:

То есть не менее, чем 0,96.

Для биномиального распределения неравенство Чебышева примет вид:

ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН

ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН — раздел Математика, ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Наиболее Часто Встречаются Законы Равномерного, Нормального И Показательного.

Наиболее часто встречаются законы равномерного, нормального и показательного распределения вероятностей непрерывных случайных величин.

Равномерным называется распределение вероятностей непрерывной случайной величины Х, если на интервале (а,b), которому принадлежат все возможные значения Х, плотность распределения сохраняет постоянное значение (6.1)

Функция распределения имеет вид:

Нормальным называется распределение вероятностей непрерывной случайной величины Х, плотность которого имеет вид:

Вероятность того, что случайная величина Х примет значение, принадлежащее интервалу (?; ?):

где — функция Лапласа, причем,

Вероятность того, что абсолютная величина отклонения будет меньше положительного числа?:

В частности, при а = 0, . (6.7)

Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины Х, которое описывается плотностью:

где? – постоянная положительная величина.

Функция распределения показательного закона:

Вероятность попадания непрерывной случайной величины Х в интервал (а, в), распределенной по показательному закону:

1. Случайная величина Х равномерно распределена в интервале (-2;N). Найти: а) дифференциальную функцию случайной величины Х; б) интегральную функцию; в) вероятность попадания случайной величины в интервал (-1;); г) математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х.

2. Найти математическое ожидание и дисперсию случайной величины, равномерно распределенной в интервале: а) (5; 11); б) (-3; 5). Начертить графики этих функций.

3. Случайная величина Х равномерно распределена на интервале (2; 6), причем Д(х) = 12. Найти функции распределения случайной величины Х. Начертить графики функций.

4. Случайная величина Х распределена по закону прямоугольного треугольника (рис. 1) в интервале (0; а). Найти: а) дифференциальную функцию случайной величины Х; б) интегральную функцию; в) вероят-

ность попадания случайной величины

в интервал (); г) математическое

ожидание, дисперсию и среднее квад-

ратическое отклонение случайной

5. Случайная величина Х распределена по закону Симпсона («закону равнобедренного треугольника») (Рис. 2) на интервале (-а; а). Найти: а) дифференциальную функцию распределения вероятностей случайной величины Х;

б) интегральную функцию и построить ее график; в) вероятность попадания случайной величины в интервал (-); г) математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х.

6. Для исследования продуктивности определенной породы домашней птицы измеряют диаметр яиц. Наибольший поперечный диаметр яиц представляет собой случайную величину, распределенную по нормальному закону со средним значением 5 см и средним квадратическим отклонением 0,3 см. Найти вероятность того, что: а) диаметр взятого наудачу яйца будет заключен в границах от 4,7 до 6,2 см; б) отклонение диаметра от среднего не превзойдет по абсолютной величине 0,6 см.

7. Вес вылавливаемых в пруду рыб подчиняется нормальному закону распределения со средним квадратическим отклонением 150 г и математическим ожиданием а = 1000 г. Найти вероятность того, что вес пойманной рыбы будет: а) от 900 до 1300 г; б) не более 1500 г; в) не менее 800 г; г) отличаться от среднего веса по модулю не более чем на 200 г; д) начертить график дифференциальной функции случайной величины Х.

8. Урожайность озимой пшеницы по совокупности участков распределяется по нормальному закону с параметрами: а = 50 ц/га, = 10 ц/га. Определить: а) какой процент участков будет иметь урожайность свыше 40 ц/га; б) процент участков с урожайность от 45 до 60 ц/га.

9. Выборочным методом измеряется засоренность зерна, случайные ошибки измерения подчинены нормальному закону распределения со средним квадратическим отклонением 0,2 г и математическим ожиданием а = 0. Найти вероятность того, что из четырех независимых измерений ошибка хотя бы одного из них не превзойдет по абсолютной величине 0,3 г.

10. Количество зерна, собранного с каждой делянки опытного поля, есть нормально распределенная случайная величина Х, имеющая математическое ожидание а = 60 кг и среднее квадратическое отклонение равно 1,5 кг. Найти интервал, в котором с вероятностью 0,9906 будет заключена величина Х. Написать дифференциальную функцию этой случайной величины.

11. С вероятностью 0,9973 было установлено, что абсолютное отклонение живого веса случайно взятой головы крупного рогатого скота от среднего веса животного по всему стаду не превосходит 30 кг. Найти среднее квадратическое отклонение живого веса скота, считая, что распределение скота по живому весу подчиняется нормальному закону.

12. Урожайность овощей по участкам является нормально-распределенной случайной величиной с математическим ожиданием 300 ц/га и средним квадратическим отклонением 30 ц/га. С вероятностью 0,9545 определить границы, в которых будет находиться средняя урожайность овощей на участках.

13. Нормально-распределенная случайная величина Х задана дифференциальной функцией:

Определить: а) вероятность попадания случайной величины в интервал

(3; 9); б) моду и медиану случайной величины Х.

14. Торговая фирма продает однотипные изделия двух производителей. Срок службы изделий подчиняется нормальному закону. Средний срок службы изделий первого производителя составляет 5,5 тыс. часов, а второго 6 тыс. часов. Первый производитель утверждает, что с вероятностью 0,95 срок службы первого производителя находится в границах от 5 до 6 тыс. часов, а второй, с вероятностью 0,9, в границах от 5 до 7 тыс. часов. Какой производитель имеет большую колеблемость срока службы изделий.

15. Месячная заработная плата работников предприятия распределяется по нормальному закону с математическим ожиданием а = 10 тыс. руб. Известно, что 50 % работников предприятия получает заработную плату от 8 до 12 тыс. руб. Определить, какой процент работников предприятия имеет месячную заработную плату от 9 до 18 тыс. руб.

16. Написать плотность и функцию распределения показательного закона, если: а) параметр; б) ; в) . Начертить графики функций.

17. Случайная величина Х распределена по показательному закону, причем. Найти вероятность попадания случайной величины Х в интервал: а) (0; 1); б) (2; 4). М(Х), Д(Х), (Х).

18. Найти М(Х), Д(Х), (Х) показательного закона распределения случайной величины Х заданной функцией:

19. Испытываются два независимо работающих элемента. Длительность безотказной работы первого имеет показательнее распределение, второго. Найти вероятность того, что за время длительностью 20 часов: а) оба элемента будут работать; б) откажет только один элемент; в) откажет хотя бы один элемент; г) оба элемента откажут.

20. Вероятность того, что оба независимых элемента будут работать в течении 10 суток равна 0,64. Определить функцию надежности для каждого элемента, если функции одинаковы.

21. Среднее число ошибок, которые делает оператор в течение часа работы равно 2. Найти вероятность того, что за 3 часа работы оператор сделает: а) 4 ошибки; б) не менее двух ошибок; в) хотя бы одну ошибку.

22. Среднее число вызовов, поступающих на АТС в одну минуту, равно трем. Найти вероятность того, что за 2 минуты поступит: а) 4 вызова; б) не менее трех вызовов.

23. Случайная величина Х распределена по закону Коши

Непрерывные случайные величины

6. Непрерывные случайные величины

6.1. Числовые характеристики непрерывных случайных величин

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

Функцией распределения называют функцию F (x) ? определяющую вероятность того, что случайная величина Х в результате испытания примет значение, меньше х, т.е.

Свойства функции распределения:

1. Значения функции распределения принадлежат отрезку , т.е.

2. F (x)- неубывающая функция, т.е. если , то .

· Вероятность того, что случайная величина Х примет значение, заключенное в интервале , равна:

· Вероятность того, что непрерывная случайная величина Х примет одно определенное значение, равна нулю.

Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию — первую производную от функции распределения .

Вероятность попадания непрерывной случайной величины в заданный интервал:

Нахождения функции распределения по известной плотности распределения:

Свойства плотности распределения

1. Плотность распределения неотрицательная функция:

2. Условие нормировки:

Среднее квадратическое отклонение

6.2. Равномерное распределение

Распределение вероятностей называют равномерным, если на интервале, которому принадлежат все возможные значения случайной величины, плотность распределения сохраняет постоянное значение.

Плотность вероятности равномерно распределенной случайной величины

Среднее квадратическое отклонение

6.3. Нормальное распределение

Нормальным называют распределение вероятностей случайной величины, которое описывается плотностью распределения

а- математическое ожидание

среднее квадратическое отклонение

дисперсия

Вероятность попадания в интервал

Где — функция Лапласа. Данная функция табулирована, т.е. интеграл нет необходимости вычислять, необходимо пользоваться таблицей.

Вероятность отклонения случайной величины х от математического ожидания

Правило трех сигм

Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратичческого отклонения.

Если быть точным, то вероятность выхода за пределы указанного интервала равна 0,27%

Вероятность нормального распределения онлайн калькулятор

6.4. Показательное распределение

Случайная величина Х распределена по показательному закону, если плотность распределения имеет вид

Среднее квадратическое отклонение

Отличительной особенностью данного распределения является то, что математическое ожидание равно среднему квадратическому отклонению.

Теория вероятностей. Случайные события (стр. 6)

12. Случайные величины Х , если , , , .

13. Вероятность изготовления бракованного изделия равна 0,0002. Вычислить вероятность того, что контролер, проверяющий качество 5000 изделий, обнаружит среди них 4 бракованных.

Х Х примет значение, принадлежащее интервалу . Построить графики функций и .

15. Вероятность безотказной работы элемента распределена по показательному закону (). Найти вероятность того, что элемент проработает безотказно в течение 50 часов.

16. Устройство состоит из 10 независимо работающих элементов. Вероятность отказа каждого элемента за время Т равна 0,05. С помощью неравенства Чебышева оценить вероятность того, что абсолютная величина разности между числом отказавших элементов и средним числом (математическим ожиданием) отказов за время Т окажется меньше двух.

17. По цели (на рис.4.1 м, м) сделано три независимых выстрела без систематической ошибки () с ожидаемым разбросом попадания м. Найти вероятность хотя бы одного попадания в цель.

1. Сколько трехзначных чисел можно составить из цифр 0,1,2,3,4,5?

2. Хор состоит из 10 участников. Сколькими способами можно выбрать в течение 3 дней по 6 участников так, чтобы каждый день были различные составы хора?

3. Сколькими способами можно разделить колоду из 52 тасованных карт пополам так, чтобы в одной половине оказалось три туза?

4. Из ящика, содержащего жетоны с номерами от 1 до 40, участники жеребьевки вытягивают жетоны. Определить вероятность того, что номер первого наудачу извлеченного жетона не содержит цифры 2.

5. На испытательном стенде в определенных условиях испытываются 250 приборов. Найти вероятность того, что в течение часа откажет хотя бы один из испытываемых приборов, если известно, что вероятность отказа в течение часа одного из этих приборов равна 0,04 и одинакова для всех приборов.

6. В пирамиде 10 винтовок, из которых 4 снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовок без оптического прицела эта вероятность равна 0,8. Стрелок поразил мишень из наудачу взятой винтовки. Найти вероятность того, что стрелок стрелял из винтовки с оптическим прицелом.

7. Прибор состоит из 10 узлов. Надежность (вероятность безотказной работы в течение времени t для каждого узла равна . Узлы выходят из строя независимо один от другого. Найти вероятность того, что за время t : а) откажет хотя бы один узел; б) откажут ровно два узла; в) откажет ровно один узел; г) откажут не менее двух узлов.

8. Испытывается каждый из 16 элементов некоторого устройства. Вероятность того, что элемент выдержит испытания, равна 0,8. Найти наивероятнейшее число элементов, которые выдержат испытание.

9. Найти вероятность того, что событие А (переключение передач) наступит 70 раз на 243-километровой трассе, если вероятность переключения на каждом километре этой трассы равна 0,25.

10. Вероятность поражения мишени при одном выстреле равна 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена не менее 75 раз и не более 90 раз.

Х .

12. Случайные величины Х и независимы. Найти математическое ожидание и дисперсию случайной величины , если , , , .

13. Рукопись объемом в 1000 страниц машинописного текста содержит 100 опечаток. Найти вероятность того, что наудачу взятая страница содержит ровно 2 опечатки.

14. Непрерывная случайная величина Х распределена равномерно с постоянной плотностью вероятностей , где Найти 1) параметр и записать закон распределения; 2) Найти , ; 3) Найти вероятность того, что Х примет значение, принадлежащее интервалу .

15. Длительность безотказной работы элемента имеет показательное распределение (). Найти вероятность того, что за t = 24 ч элемент не откажет.

16. Непрерывная случайная величина Х распределена по нормальному закону . Найти , . Найти вероятность того, что в результате испытания Х примет значение, заключенное в интервале .

17. Задано распределение вероятностей дискретной двумерной случайной величины:

Найти закон распределения составляющих Х и ; их математические ожидания и ; дисперсии и ; коэффициент корреляции .

1. Сколько трехзначных чисел можно составить из цифр 1,2, 3, 4, 5, если каждую из этих цифр использовать не более одного раза?

2. Дано n точек, никакие 3 из которых не лежат на одной прямой. Сколько прямых можно провести, соединяя точки попарно?

Сколько можно сделать костей домино, используя числа от 0 до 9?

3. Какова вероятность того, что наудачу вырванный листок из нового календаря соответствует первому числу месяца? (Год считается не високосным).

4. В цехе имеется 3 телефона, работающих независимо друг от друга.

5. Вероятности занятости каждого из них соответственно следующие: ; ; . Найти вероятность того, что хотя бы один телефон свободен.

6. Имеются три одинаковые по виду урны. В первой урне 20 белых шаров, во второй — 10 белых и 10 черных шаров, в третьей — 20 черных шаров. Из выбранной наугад урны вынули белый шар. Найти вероятность того, что шар вынут из первой урны.

7. В некоторых районах летом в среднем 20% дней бывают дождливыми. Какова вероятность того, что в течение одной недели: а) будет хотя бы один дождливый день; б) будет ровно один дождливый день; в) число дождливых дней будет не более четырех; г) дождливых дней не будет.

8. Вероятность нарушения точности в сборке прибора составляет 0,32. Определить наиболее вероятное число точных приборов в партии на 9 штук.

9. Определить вероятность того, что при 150 выстрелах из винтовки мишень будет поражена 70 раз, если вероятность поражения мишени при одном выстреле равна 0,4.

10. Определить вероятность того, что из 1000 родившихся детей число мальчиков будет не менее 455 и не более 555, если вероятность рождения мальчиков равна 0,515.

11. Дан закон распределения дискретной случайной величины Х :

Найти: 1) значение вероятности , соответствующее значению ; 2) , , ; 3) функцию распределения ; построить ее график. Построить многоугольник распределения случайной величины Х .

12. Случайные величины Х и независимы. Найти математическое ожидание и дисперсию случайной величины , если , , , .

13. Вероятность изготовления нестандартной детали равна 0,004. Найти вероятность того, что среди 1000 деталей окажется 5 нестандартных.

14. Непрерывная случайная величина Х задана функцией распределения Найти: 1) функцию плотности ; 2) , , ; 3) вероятность того, что в результате опыта случайная величина Х примет значение, принадлежащее интервалу . Построить графики функций и .км, км. Определить вероятность двух попаданий в цель.

1. На собрании должны выступать ораторы А , В , С , D . Сколькими способами их можно разместить в списке выступающих так, чтобы В выступал после оратора А ?

2. Сколькими способами можно разложить 14 одинаковых шаров по 8-ми ящикам?

3. Сколько пятизначных чисел можно составить из цифр от 1 по 9?

4. Студент пришел на экзамен, зная лишь 24 из 32-х вопросов программы. Экзаменатор задал ему 3 вопроса. Найти вероятность того, что студент ответил на все вопросы.

5. К концу дня в магазине осталось 60 арбузов, среди которых 50 спелых. Покупатель выбирает 2 арбуза. Какова вероятность того, что оба арбуза спелые?

6. В группе спортсменов 20 бегунов, 6 прыгунов и 4 метателя молота. Вероятность того, что будет выполнена норма мастера спорта бегуном, равна 0,9; прыгуном — 0,8 и метателем — 0,75. Определить вероятность того, что наудачу вызванный спортсмен выполнит норму мастера спорта.

7. Вероятность того, что вещь, взятая напрокат, будет возвращена исправной, равна 0,8. Определить вероятность того, что из пяти взятых вещей: а) три будут возвращены исправными; б) все пять вещей будут возвращены исправными; в) будут возвращены исправными не менее двух вещей.

8. Вероятность появления брака в партии из 500 деталей равна 0,035. Определить наивероятнейшее число бракованных деталей в этой партии.

9. При производстве электрических лампочек вероятность изготовления лампы первого сорта принимается равной 0,64. Определить вероятность того, что из 100 взятых наудачу электроламп, 70 будут первого сорта.

10. Подлежат исследованию 400 проб руды. Вероятность промышленного содержания металла в каждой пробе одинакова и равна 0,8. Найти вероятность того, что число проб с промышленным содержанием металла будет заключено между 290 и 340.

11. Дан закон распределения дискретной случайной величины Х, если Х Х и ; 4) выяснить, являются ли эти величины зависимыми.

1. Сколькими способами можно рассадить 8 гостей за круглым столом так, чтобы два известных гостя сидели рядом?

2. Сколько различных «слов» можно составить, переставляя буквы слова «комбинаторика»?

3. Сколько существует треугольников, длины сторон которых принимают одно из следующих значений: 4, 5, 6, 7 см?

4. В конверте лежат буквы разрезной азбуки: О , П , Р , С , Т . Буквы тщательно перемешаны. Определить вероятность того, что, вынимая эти буквы и укладывая их рядом, получится слово «СПОРТ ‘.

5. С первого автомата на сборку поступает 20%, со второго 30%, с третьего — 50% деталей. Первый автомат дает в среднем — 0,2% брака, второй — 0,3%, третий — 1 %. Найти вероятность того, что поступившая на сборку деталь бракованная.

6. Один из трех стрелков вызывается на линию огня и производит выстрел. Цель поражена. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго — 0,5, для третьего — 0,8. Найти вероятность того, что выстрел произведён вторым стрелком.

7. В цехе 6 моторов. Для каждого мотора вероятность того, что он в данный момент включен, равна 0,8. Найти вероятность того, что в данный момент: а) включено 4 мотора; б) включен хотя бы один мотор; в) включены все моторы.

8. В телевизоре стоят 12 ламп. Каждая из них с вероятностью 0,4 может выйти из строя в течение гарантийного срока. Найти наивероятнейшее число ламп, вышедших из строя в течение гарантийного срока.

9. Вероятность рождения мальчика равна 0,515. Найти вероятность того, что из 200 родившихся детей мальчиков и девочек будет поровну.

10. Вероятность того, что деталь не прошла проверку ОТК, будет . Найти вероятность того, что среди 400 случайно отобранных деталей окажется непроверенных от 70 до 100 деталей.

11. Дан закон распределения дискретной случайной величины Х :

  • Основные законы распределения случайной величины Учреждение образования «Белорусская государственная Кафедра высшей математики по изучению темы «Основные законы распределения случайной величины» студентами бухгалтерского факультета заочной формы получения образования (НИСПО) Основные законы распределения случайной […]
  • Штрафы гибдд лениногорск Поздно государство предпримет меры по Штрафы гибдд лениногорск взысканию вашей если Вы не обжаловали Штрафы гибдд лениногорск нужно Условные обозначения. Без регистрационных документов и без полиса ОСАГО обойдется в 500 места гиперссылки на данную статью. Должностных Штрафы гибдд лениногорск […]
  • Выходное пособие чернобыльцу: (3 + 1) или только 3? Для граждан, пострадавших вследствие Чернобыльской катастрофы (далее - чернобыльцы), Законом № 796* установлены определенные льготы и гарантии. Так, чернобыльцам, отнесенным к категории 1, среди прочего указанным Законом определено преимущественное право остаться на […]
  • Налог на дачу. Это надо знать. Думаем с мужем о да че, куда можно было бы приехать, покапаться немного в грядках, а вечером сесть в кресло-качалку у костра и ни о чём не думать. Просто отдыхать. Не понаслышке знаем, что садоводство и огородничество обходится недешево (навоз, удобрения, рассада), налоги… Какие налоги […]
  • Совет 1: Как определить закон распределения Как определить закон распределения Как построить диаграмму Парето Как найти математическое ожидание, если известна дисперсия - математический справочник; - простой карандаш; - тетрадь; - ручка. Нормальный закон распределения в 2018 Совет 2: Как […]
  • 3. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ПОНЯТИЕ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Случайной величиной Называется величина, которая в результате испытаний, проводимых в одних и тех же условиях, принимает различные, вообще говоря, значения, зависящие от не учитываемых случайных факторов. Примеры случайных величин: число выпавших очков на […]
  • Ликвидация проход Sобщ-общая площадь объекта, км 2 ; N пор -число пораженных элементов объекта (зданий, цехов, сооружений, систем); Nобщ -общее число элементов объекта. Для определения числа жертв можно использовать следующее выражение: где Sпор - число жертв при внезапном взрыве; Lс -численность работающих данной […]
  • Законы излучения стефана больцмана Для реальных тел закон Стефана-Больцмана выполняется лишь качественно, то есть с ростом температуры энергетические светимости всех тел увеличиваются. Однако, для реальных тел зависимость энергетической светимости от температуры уже не описывается простым соотношением (16.7), а […]

Функцией распределения случайной величины X называется функция F(x), выражающая для каждого х вероятность того, что случайная величина X примет значение , меньшее х

Пример 2.5. Дан ряд распределения случайной величины

Найти и изобразить графически ее функцию распределения. Решение. В соответствии с определением

F(jc) = 0 при х х

F(x) = 0,4 + 0,1 = 0,5 при 4 F{x) = 0,5 + 0,5 = 1 при х > 5.

Итак (см. рис. 2.1):


Свойства функции распределения:

1. Функция распределения случайной величины есть неотрицательная функция, заключенная между нулем и единицей:

2. Функция распределения случайной величины есть неубывающая функция на всей числовой оси, т.е. при х 2

3. На минус бесконечности функция распределения равна нулю, на плюс бесконечности - равна единице, т.е.

4. Вероятность попадания случайной величины X в интервал равна определенному интегралу от ее плотности вероятности в пределах от а до b (см. рис. 2.2), т.е.


Рис. 2.2

3. Функция распределения непрерывной случайной величины (см. рис. 2.3) может быть выражена через плотность вероятности по формуле:

F(x)= Jp (*)*. (2.10)

4. Несобственный интеграл в бесконечных пределах от плотности вероятности непрерывной случайной величины равен единице:

Геометрически свойства / и 4 плотности вероятности означают, что ее график - кривая распределения - лежит не ниже оси абсцисс , и полная площадь фигуры , ограниченной кривой распределения и осью абсцисс , равна единице.

Для непрерывной случайной величины X математическое ожидание М(Х) и дисперсия D(X) определяются по формулам:

(если интеграл абсолютно сходится); или

(если приведенные интегралы сходятся).

Наряду с отмеченными выше числовыми характеристиками для описания случайной величины используется понятие квантилей и процентных точек.

Квантилем уровня q (или q-квантилем) называется такое значение x q случайной величины , при котором функция ее распределения принимает значение , равное q, т. е.

  • 100q%-ou точкой называется квантиль X~ q .
  • ? Пример 2.8.

По данным примера 2.6 найти квантиль xqj и 30%-ную точку случайной величины X.

Решение. По определению (2.16) F(xo t3)= 0,3, т. е.

~Y~ = 0,3, откуда квантиль х 0 3 = 0,6. 30%-ная точка случайной величины X , или квантиль Х)_о,з = xoj » находится аналогично из уравнения ^ = 0,7 . откуда *,= 1,4. ?

Среди числовых характеристик случайной величины выделяют начальные v* и центральные р* моменты к-го порядка , определяемые для дискретных и непрерывных случайных величин по формулам:


Как известно, случайной величиной называется переменная величина, которая может принимать те или иные значения в зависимости от случая. Случайные величины обозначают заглавными буквами латинского алфавита (X, Y, Z), а их значения – соответствующими строчными буквами (x, y, z). Случайные величины делятся на прерывные (дискретные) и непрерывные.

Дискретной случайной величиной называется случайная величина, принимающая лишь конечное или бесконечное (счетное) множество значений с определенными ненулевыми вероятностями.

Законом распределения дискретной случайной величины называется функция, связывающая значения случайной величины с соответствующими им вероятностями. Закон распределения может быть задан одним из следующих способов.

1 . Закон распределения может быть задан таблицей:

где λ>0, k = 0, 1, 2, … .

в) с помощью функции распределения F(x) , определяющей для каждого значения x вероятность того, что случайная величина X примет значение, меньшее x, т.е. F(x) = P(X < x).

Свойства функции F(x)

3 . Закон распределения может быть задан графически – многоугольником (полигоном) распределения (смотри задачу 3).

Отметим, что для решения некоторых задач не обязательно знать закон распределения. В некоторых случаях достаточно знать одно или несколько чисел, отражающих наиболее важные особенности закона распределения. Это может быть число, имеющее смысл «среднего значения» случайной величины, или же число, показывающее средний размер отклонения случайной величины от своего среднего значения. Числа такого рода называют числовыми характеристиками случайной величины.

Основные числовые характеристики дискретной случайной величины :

  • Mатематическое ожидание (среднее значение) дискретной случайной величины M(X)=Σ x i p i .
    Для биномиального распределения M(X)=np, для распределения Пуассона M(X)=λ
  • Дисперсия дискретной случайной величины D(X)= M 2 или D(X) = M(X 2)− 2 . Разность X–M(X) называют отклонением случайной величины от ее математического ожидания.
    Для биномиального распределения D(X)=npq, для распределения Пуассона D(X)=λ
  • Среднее квадратическое отклонение (стандартное отклонение) σ(X)=√D(X) .

Примеры решения задач по теме «Закон распределения дискретной случайной величины»

Задача 1.

Выпущено 1000 лотерейных билетов: на 5 из них выпадает выигрыш в сумме 500 рублей, на 10 – выигрыш в 100 рублей, на 20 – выигрыш в 50 рублей, на 50 – выигрыш в 10 рублей. Определить закон распределения вероятностей случайной величины X – выигрыша на один билет.

Решение. По условию задачи возможны следующие значения случайной величины X: 0, 10, 50, 100 и 500.

Число билетов без выигрыша равно 1000 – (5+10+20+50) = 915, тогда P(X=0) = 915/1000 = 0,915.

Аналогично находим все другие вероятности: P(X=0) = 50/1000=0,05, P(X=50) = 20/1000=0,02, P(X=100) = 10/1000=0,01, P(X=500) = 5/1000=0,005. Полученный закон представим в виде таблицы:

Найдем математическое ожидание величины Х: М(Х) = 1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6 = (1+2+3+4+5+6)/6 = 21/6 = 3,5

Задача 3.

Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте, построить многоугольник распределения. Найти функцию распределения F(x) и построить ее график. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины.

Решение. 1. Дискретная случайная величина X={число отказавших элементов в одном опыте} имеет следующие возможные значения: х 1 =0 (ни один из элементов устройства не отказал), х 2 =1 (отказал один элемент), х 3 =2 (отказало два элемента) и х 4 =3 (отказали три элемента).

Отказы элементов независимы друг от друга, вероятности отказа каждого элемента равны между собой, поэтому применима формула Бернулли . Учитывая, что, по условию, n=3, р=0,1, q=1-р=0,9, определим вероятности значений:
P 3 (0) = С 3 0 p 0 q 3-0 = q 3 = 0,9 3 = 0,729;
P 3 (1) = С 3 1 p 1 q 3-1 = 3*0,1*0,9 2 = 0,243;
P 3 (2) = С 3 2 p 2 q 3-2 = 3*0,1 2 *0,9 = 0,027;
P 3 (3) = С 3 3 p 3 q 3-3 = р 3 =0,1 3 = 0,001;
Проверка: ∑p i = 0,729+0,243+0,027+0,001=1.

Таким образом, искомый биномиальный закон распределения Х имеет вид:

По оси абсцисс откладываем возможные значения х i , а по оси ординат – соответствующие им вероятности р i . Построим точки М 1 (0; 0,729), М 2 (1; 0,243), М 3 (2; 0,027), М 4 (3; 0,001). Соединив эти точки отрезками прямых, получаем искомый многоугольник распределения.

3. Найдем функцию распределения F(x) = Р(Х

Для x ≤ 0 имеем F(x) = Р(Х<0) = 0;
для 0 < x ≤1 имеем F(x) = Р(Х<1) = Р(Х = 0) = 0,729;
для 1< x ≤ 2 F(x) = Р(Х<2) = Р(Х=0) + Р(Х=1) =0,729+ 0,243 = 0,972;
для 2 < x ≤ 3 F(x) = Р(Х<3) = Р(Х = 0) + Р(Х = 1) + Р(Х = 2) = 0,972+0,027 = 0,999;
для х > 3 будет F(x) = 1, т.к. событие достоверно.

График функции F(x)

4. Для биномиального распределения Х:
- математическое ожидание М(X) = np = 3*0,1 = 0,3;
- дисперсия D(X) = npq = 3*0,1*0,9 = 0,27;
- среднее квадратическое отклонение σ(X) = √D(X) = √0,27 ≈ 0,52.

Среди законов распределения для дискретных случайных величин наиболее распространенным является биномиальный закон распределения. Биномиальное распределение имеет место в следующих условиях. Пусть случайная величина - число появлений некоторого события в независимых испытаниях, вероятность появления в отдельном испытании равна . Данная случайная величина является дискретной случайной величиной, ее возможные значения . Вероятность того, что случайная величина примет значение вычисляется по формуле Бернулли: .

Определение 15. Закон распределения дискретной случайной величины называется биномиальным законом распределения, если вероятности значений случайной величины вычисляются по формуле Бернулли. Ряд распределения будет иметь вид:

Убедимся, что сумма вероятностей различных значений случайной величины равна 1. Действительно,

Так как при данных вычислениях получилась биномиальная формула Ньютона, поэтому закон распределения называется биномиальным. Если случайная величина имеет биномиальное распределение, то ее числовые характеристики находятся по формулам:

(42) (43)

Пример 15. Имеется партия из 50 деталей. Вероятность брака для одной детали . Пусть случайная величина - число бракованных деталей в данной партии. Найти математическое ожидание, дисперсию и среднее квадратичное отклонение данной случайной величины. Решение. Случайная величина имеет биномиальное распределение, так как вероятность того, что она примет значение вычисляется по формуле Бернулли. Тогда ее математическое ожидание находится по формуле (41), а именно, ; дисперсию находим по формуле (42): . Тогда среднее квадратичное отклонение будет равно . Вопрос. Приобретено 200 лотерейных билетов, вероятность выигрыша одного билета равна 0,01. Тогда среднее число лотерейных билетов, на которые выпадут выигрыши, равно: а) 10; б) 2; в) 20; г) 1.

Закон распределения Пуассона

При решении многих практических задач приходится иметь дело с дискретными случайными величинами, которые подчиняются закону распределения Пуассона. Типичными примерами случайной величины, имеющей распределение Пуассона, являются: число вызовов на телефонной станции за некоторое время ; число отказов сложной аппаратуры за время , если известно, что отказы независимы друг от друга и в среднем на единицу времени приходится отказов.Ряд распределения будет иметь вид:

То есть вероятность того, что случайная величина примет значение вычисляется по формуле Пуассона: поэтому данный закон и называется законом распределения Пуассона. Случайная величина, распределенной по закону Пуассона, имеет следующие числовые характеристики:

Распределение Пуассона зависит от одного параметра , который является математическим ожиданием случайной величины. На рисунке 14 показан общий вид многоугольника распределения Пуассона при различных значениях параметра .

Распределение Пуассона может быть использовано как приближенное в тех случаях, когда точным распределением случайной величины является биномиальное распределение, при этом число испытаний велико, а вероятность появления события в отдельном испытании мала, поэтому закон распределения Пуассона называют законом редких событий. А еще, если математическое ожидание мало отличается от дисперсии, то есть когда . В связи с этим распределение Пуассона имеет большое количество различных приложений. Пример 16. Завод отправляет на базу 500 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,002. Найти математическое ожидание числа поврежденных при перевозке деталей. Решение. Случайная величина имеет распределение Пуассона, поэтому . Вопрос. Вероятность искажения символа при передаче сообщения равна 0,004. Чтобы среднее число искаженных символов было равно 4, надо передать 100 символов.