Как выполняется моделирование по методу монте-карло. Использование метода монте-карло для расчета риска Коротко моделирование случайных величин методом монте карло

11.04.2024 Природа

Математические предпосылки создания имитационной модели

Модели и их роль в изучении процессов функционирования сложных систем

В узком смысле под моделью понимается образ, описание, представление, изображение какого-либо объекта или системы объектов (оригинала), используемое при определенных условиях в качестве заменителя его или представителя. Модель является представителем объекта, системы или понятия (идеи) в некоторой форме, отличной от формы их реального существования. Модель служит обычно средством, помогающим нам в объяснении, понимании или совершенствовании системы. Модель какого-либо объекта может быть или точной копией этого объекта (хотя и выполненной из другого материала и в другом масштабе), или отображать некоторые характерные свойства объекта в абстрактной форме.

Изучение объектов познания с помощью моделей является процессом моделирования.

Особенности целенаправленной переработки информации и повышения уровня организации в современных условиях научно-технической революции обусловили становление и развитие моделей нового типа, которые охватывают не только важнейшие параметры объекта исследования, но, и включают главные моменты деятельности исследователя. К этой группе моделей относятся: имитационные, ситуационные, эволюционные, модели катастроф, отражающие особый тип изменений.

Статистические испытания по методу Монте-Карло представляют собой простейшее имитационное моделирование при полном отсутствии каких-либо правил поведения. Получение выборок по методу Монте-Карло - основной принцип компьютерного моделирования систем, содержащих стохастические или вероятностные элементы. Зарождение метода связано с работой фон Неймана и Улана в конце 1940-х гг., когда они ввели для-него название..«Монте-Карло» и применили его к решению некоторых задач экранирования ядерных излучений. Этот математический метод был известен и ранее, но свое второе рождение нашел в Лос-Аламосе в закрытых работах по ядерной технике, которые велись под кодовым обозначением «Монте-Карло». Применение метода оказалось настолько успешным, что он получил распространение и в других областях, в частности в экономике.

Однако, имитационное моделирование - это более широкое понятие, и метод Монте-Карло является важным, но далеко не единственным методическим компонентом имитационного моделирования.

Метод Монте-Карло основан на статистических испытаниях и по природе своей является экстремальным, может применяться для решения полностью детерминированных задач, таких, как обращение матриц, решение дифференциальных уравнений в частных производных, отыскание экстремумов и численное интегрирование. При вычислениях методом Монте-Карло статистические результаты получаются путем повторяющихся испытаний. Вероятность того, что эти результаты отличаются от истинных не более чем на заданную величину, есть функция количества испытаний.



В основе вычислений по методу Монте-Карло лежит случайный выбор чисел из заданного вероятностного распределения. При практических вычислениях эти числа берут из таблиц или получают путем некоторых операций, результатами которых являются псевдослучайные числа с теми же свойствами, что и числа, получаемые путем случайной выборки. Имеется большое число вычислительных алгоритмов, которые позволяют получить длинные последовательности псевдослучайных чисел.

Метод заключается в следующем: если r i = 0,0040353607, то r i+1 = {40353607r i }}mod 1, где mod 1 означает операцию извлечения из результата только дробной части после десятичной точки. Как описано в различных литературных источниках, числа r i начинают повторяться после цикла из 50 миллионов чисел, так что r 50000001 = r 1 , Последовательность r i получается равномерно распределенной на интервале (0,1). Ниже будут рассмотрены более точные способы получения таких чисел со значительно большими периодами, а также пояснения, как в реальных моделях такие числа становятся практически случайными.

Применение метода Монте-Карло может дать существенный эффект при моделировании развития процессов, натурное наблюдение которых нежелательно или невозможно, а другие математические методы применительно к этим процессам либо не разработаны, либо неприемлемы из-за многочисленных оговорок и допущений, которые могут привести к серьезным погрешностям или неправильным выводам. В связи с этим необходимо не только наблюдать развитие процесса в нежелательных направлениях, но и оценивать гипотезы о параметрах нежелательных ситуаций, к которым приведет такое развитие, в том числе и параметрах рисков.

Энциклопедичный YouTube

    1 / 5

    ✪ RuleOfThumb - Метод Монте-Карло

    ✪ Дмитрий Казаков - Кварки

    ✪ [Коллоквиум]: Блеск и нищета математических методов в прикладных исследованиях

    ✪ Лекция 1: Погрешности вычислений

    ✪ Елена Браун - Миф о Ричарде lll

    Субтитры

История

Алгоритм Бюффона для определения числа Пи

Число бросаний Число пересечений Длина иглы Расстояние между прямыми Вращение Значение Пи Ошибка
Первая попытка 500 236 3 4 отсутствует 3.1780 +3,6⋅10 -2
Вторая попытка 530 253 3 4 присутствует 3.1423 +7,0⋅10 -4
Третья попытка 590 939 5 2 присутствует 3.1416 +4,7⋅10 -5

Комментарии:

Связь стохастических процессов и дифференциальных уравнений

Создание математического аппарата стохастических методов началось в конце XIX века. В 1899 году лорд Релей показал, что одномерное случайное блуждание на бесконечной решётке может давать приближенное решение одного из видов параболического дифференциального уравнения . Андрей Николаевич Колмогоров в 1931 году дал большой толчок развитию стохастических подходов к решению различных математических задач, поскольку он сумел доказать, что цепи Маркова связаны с некоторыми интегро-дифференциальными уравнениями . В 1933 году Иван Георгиевич Петровский показал, что случайное блуждание , образующее Марковскую цепь , асимптотически связано с решением эллиптического дифференциального уравнения в частных производных . После этих открытий стало понятно, что стохастические процессы можно описывать дифференциальными уравнениями и, соответственно, исследовать при помощи хорошо на тот момент разработанных математических методов решения этих уравнений.

Рождение метода Монте-Карло в Лос-Аламосе

Идея была развита Уламом, который, раскладывая пасьянсы во время выздоровления после болезни, задался вопросом, какова вероятность того, что пасьянс сложится. Вместо того, чтобы использовать обычные для подобных задач соображения комбинаторики , Улам предположил, что можно просто поставить эксперимент большое число раз и, подсчитав число удачных исходов, оценить вероятность. Он же предложил использовать компьютеры для расчётов методом Монте-Карло.

Появление первых электронных компьютеров , которые могли с большой скоростью генерировать псевдослучайные числа , резко расширило круг задач, для решения которых стохастический подход оказался более эффективным, чем другие математические методы. После этого произошёл большой прорыв, и метод Монте-Карло применялся во многих задачах, однако его использование не всегда было оправдано из-за большого количества вычислений, необходимых для получения ответа с заданной точностью.

Годом рождения метода Монте-Карло считается 1949 год , когда в свет выходит статья Метрополиса и Улама «Метод Монте-Карло». Название метода происходит от названия коммуны в княжестве Монако , широко известного своими многочисленными казино , поскольку именно рулетка является одним из самых широко известных генераторов случайных чисел . Станислав Улам пишет в своей автобиографии «Приключения математика», что название было предложено Николасом Метрополисом в честь его дяди, который был азартным игроком.

Дальнейшее развитие и современность

Интегрирование методом Монте-Карло

Предположим, необходимо взять интеграл от некоторой функции. Воспользуемся неформальным геометрическим описанием интеграла и будем понимать его как площадь под графиком этой функции.

Для определения этой площади можно воспользоваться одним из обычных численных методов интегрирования : разбить отрезок на подотрезки, подсчитать площадь под графиком функции на каждом из них и сложить. Предположим, что для функции, представленной на рисунке 2, достаточно разбиения на 25 отрезков и, следовательно, вычисления 25 значений функции. Представим теперь, мы имеем дело с n {\displaystyle n} -мерной функцией. Тогда нам необходимо 25 n {\displaystyle 25^{n}} отрезков и столько же вычислений значения функции. При размерности функции больше 10 задача становится огромной. Поскольку пространства большой размерности встречаются, в частности, в задачах теории струн , а также многих других физических задачах, где имеются системы со многими степенями свободы, необходимо иметь метод решения, вычислительная сложность которого бы не столь сильно зависела от размерности. Именно таким свойством обладает метод Монте-Карло.

Обычный алгоритм Монте-Карло интегрирования

Предположим, требуется вычислить определённый интеграл ∫ a b f (x) d x {\displaystyle \int \limits _{a}^{b}f(x)\,dx}

Рассмотрим случайную величину u {\displaystyle u} , равномерно распределённую на отрезке интегрирования . Тогда также будет случайной величиной, причём её математическое ожидание выражается как
E f (u) = ∫ a b f (x) φ (x) d x {\displaystyle \mathbb {E} f(u)=\int \limits _{a}^{b}f(x)\varphi (x)\,dx} , где φ (x) {\displaystyle \varphi (x)} - плотность распределения случайной величины u {\displaystyle u} , равная 1 b − a {\displaystyle {\frac {1}{b-a}}} на участке [ a , b ] {\displaystyle } .

Таким образом, искомый интеграл выражается как
∫ a b f (x) d x = (b − a) E f (u) {\displaystyle \int \limits _{a}^{b}f(x)\,dx=(b-a)\mathbb {E} f(u)} .

Но математическое ожидание случайной величины f (u) {\displaystyle f(u)} можно легко оценить, смоделировав эту случайную величину и посчитав выборочное среднее.

Итак, бросаем N {\displaystyle N} точек, равномерно распределённых на [ a , b ] {\displaystyle } , для каждой точки u i {\displaystyle u_{i}} вычисляем f (u i) {\displaystyle f(u_{i})} . Затем вычисляем выборочное среднее: 1 N ∑ i = 1 N f (u i) {\displaystyle {\frac {1}{N}}\sum _{i=1}^{N}f(u_{i})} .

В итоге получаем оценку интеграла: ∫ a b f (x) d x ≈ b − a N ∑ i = 1 N f (u i) {\displaystyle \int \limits _{a}^{b}f(x)\,dx\approx {\frac {b-a}{N}}\sum _{i=1}^{N}f(u_{i})}

Точность оценки зависит только от количества точек N {\displaystyle N} .

Этот метод имеет и геометрическую интерпретацию. Он очень похож на описанный выше детерминистический метод, с той разницей, что вместо равномерного разделения области интегрирования на маленькие интервалы и суммирования площадей получившихся «столбиков» мы забрасываем область интегрирования случайными точками, на каждой из которых строим такой же «столбик», определяя его ширину как b − a N {\displaystyle {\frac {b-a}{N}}} , и суммируем их площади.

Геометрический алгоритм Монте-Карло интегрирования

Для определения площади под графиком функции можно использовать следующий стохастический алгоритм:

Для малого числа измерений интегрируемой функции производительность Монте-Карло интегрирования гораздо ниже, чем производительность детерминированных методов. Тем не менее, в некоторых случаях, когда функция задана неявно, а необходимо определить область, заданную в виде сложных неравенств, стохастический метод может оказаться более предпочтительным.

Использование выборки по значимости

При том же количестве случайных точек, точность вычислений можно увеличить, приблизив область, ограничивающую искомую функцию, к самой функции. Для этого необходимо использовать случайные величины с распределением, форма которого максимально близка к форме интегрируемой функции. На этом основан один из методов улучшения сходимости в вычислениях методом Монте-Карло: выборка по значимости .

Оптимизация

Различные вариации метода Монте-Карло можно использовать для решения задач оптимизации. Например, алгоритм имитации отжига .

Применение в физике

Компьютерное моделирование играет в современной физике важную роль и метод Монте-Карло является одним из самых распространённых во многих областях от квантовой физики до физики твёрдого тела, физики плазмы и астрофизики.

Алгоритм Метрополиса

Традиционно метод Монте-Карло применялся для определения различных физических параметров систем, находящихся в состоянии термодинамического равновесия. Предположим, что имеется набор возможных состояний физической системы S {\displaystyle S} . Для определения среднего значения A ¯ {\displaystyle {\overline {A}}} некоторой величины A {\displaystyle A} необходимо рассчитать A ¯ = ∑ S A (S) P (S) {\displaystyle {\overline {A}}=\sum _{S}A(S)P(S)} , где суммирование производится по всем состояниям S {\displaystyle S} из W (S) {\displaystyle W(S)} , P (S) {\displaystyle P(S)} - вероятность состояния S {\displaystyle S} .

Динамическая (кинетическая) формулировка

Прямое моделирование методом Монте-Карло

Прямое моделирование методом Монте-Карло какого-либо физического процесса подразумевает моделирование поведения отдельных элементарных частей физической системы. По сути это прямое моделирование близко к решению задачи из первых принципов , однако обычно для ускорения расчётов допускается применение каких-либо физических приближений. Примером могут служить расчёты различных процессов методом молекулярной динамики : с одной стороны система описывается через поведение её элементарных составных частей, с другой стороны, используемый потенциал взаимодействия зачастую является эмпирическим .

Примеры прямого моделирования методом Монте-Карло:

  • Моделирование облучения твёрдых тел ионами в приближении бинарных столкновений.
  • Прямое Монте-Карло моделирование разреженных газов.
  • Большинство кинетических Монте-Карло моделей относятся к числу прямых (в частности, исследование молекулярно-пучковой эпитаксии).

Квантовый метод Монте-Карло

Квантовый метод Монте-Карло широко применяется для исследования сложных молекул и твёрдых тел. Это название объединяет несколько разных методов. Первый из них это вариационный метод Монте-Карло, который по сути является численным интегрированием многомерных интегралов, возникающих при решении уравнения Шрёдингера . Для решения задачи, в которой участвует 1000 электронов, необходимо взятие 3000-мерных интегралов, и при решении таких задач метод Монте-Карло имеет огромное преимущество в производительности по сравнению с другими численными методами интегрирования . Другая разновидность метода Монте-Карло - это диффузионный метод Монте-Карло.

Введение

Метод Монте-Карло – это численный метод решения математических задач при помощи моделирования случайных величин.

Датой рождение метода Монте-Карло принято считать 1949 г., когда появилась статья под названием «Метод Монте-Карло» (Н. Метрополис, С. Улам). Создателями этого метода считают американских математиков Дж. Неймана и С. Улама. В нашей стране первые статьи были опубликованы в 1955–56 гг. (В.В. Чавчанидзе, Ю.А. Шрейдер, В.С. Владимиров)

Однако теоретическая основа метода была известна давно. Кроме того, некоторые задачи статистики рассчитывались иногда с помощью случайных выборок, т.е. фактически методом Монте-Карло. Однако до появления ЭВМ этот метод не мог найти сколько-нибудь широкого применения, так как моделировать случайные величины вручную – очень трудоёмкая работа. Таким образом, возникновение метода Монте-Карло как весьма универсального численного метода стало возможным только благодаря появлению ЭВМ.

Само название «Монте-Карло» происходит от города Монте-Карло в княжестве Монако, знаменитого своим игорным домом, а одним из простейших механических приборов для получения случайных величин является рулетка.

Первоначально метод Монте-Карло использовался главным образом для решения задач нейтронной физики, где традиционные численные методы оказались малопригодными. Далее его влияние распространилось на широкий круг задач статистической физики, очень разных по своему содержанию. К разделам науки, где всё в большей мере используется метод Монте-Карло, следует отнести задачи теории массового обслуживания, задачи теории игр и математической экономики, задачи теории передачи сообщений при наличии помех и ряд других.

Метод Монте-Карло оказал и продолжает оказывать существенное влияние на развитие методов вычислительной математики и при решении многих задач успешно сочетается с другими вычислительными методами и дополняет их. Его применение оправдано в первую очередь в тех задачах, которые допускают теоретико-вероятностное описание. Это объясняется как естественность получения ответа с некоторой заданной вероятностью в задачах с вероятностным содержанием, так и существенным упрощением процедуры решения.

В подавляющем большинстве задач, решаемых методами Монте-Карло, вычисляют математические ожидания некоторых случайных величин. Так как чаще всего математические ожидания представляют собой обычные интегралы, в том числе и кратные, то центральное положение в теории методов Монте-Карло занимают методы вычисления интегралов.


1. Теоретическая часть

1.1 Сущность метода Монте-Карло и моделирование случайных величин

Предположим, что нам необходимо вычислить площадь плоской фигуры

. Это может быть произвольная фигура, заданная графически или аналитически (связная или состоящая из нескольких частей). Пусть это будет фигура, заданная на рис. 1.1.

Предположим, что эта фигура расположена внутри единичного квадрата.

Выберем внутри квадрата

случайных точек. Обозначим через число точек, попавших внутрь фигуры . Геометрически видно, что площадь фигуры приближенно равна отношению . Причем, чем больше число , тем больше точность этой оценки.

Для того чтобы выбирать точки случайно, необходимо перейти к понятию случайная величина. Случайная величина

непрерывная, если она может принимать любое значение из некоторого интервала .

Непрерывная случайная величина

определяется заданием интервала , содержащего возможные значения этой величины, и функции , которая называется плотностью вероятностей случайной величины (плотностью распределения ). Физический смысл следующий: пусть - произвольный интервал, такой что , тогда вероятность того, что окажется в интервале , равна интегралу (1.1)

Множество значений

может быть любым интервалом (возможен случай ). Однако плотность должна удовлетворять двум условиям:

1) плотность

положительна: ; (1.2)

2) интеграл от плотности

по всему интервалу равен 1: (1.3)

Математическим ожиданием непрерывной случайной величины называется число

(1.4)

Дисперсией непрерывной случайной величины называется число:


Нормальной случайной величиной называется случайная величина

, определённая на всей оси и имеющая плотность (1.5) - числовые параметры

Любые вероятности вида

легко вычисляются с помощью таблицы, в которой приведены значения функции , называемой обычно интегралом вероятностей.

Согласно (1.1)

В интеграле сделаем замену переменной

, тогда получим , Отсюда следует, что Также

Нормальные случайные величины очень часто встречаются при исследовании самых различных по своей природе вопросов.

Не так давно я прочитал замечательную книгу Дугласа Хаббарда . В кратком конспекте книги я обещал, что одному из разделов – Оценка риска: введение в моделирование методом Монте-Карло – я посвящу отдельную заметку. Да всё как-то не складывалось. И вот недавно я стал более внимательно изучать методы управления валютными рисками. В материалах, посвященных этой тематике, часто упоминается моделирование методом Монте-Карло. Так что обещанный материал перед вами.

Приведу простой пример моделирования методом Монте-Карло для тех, кто никогда не работал с ним ранее, но имеет определенное представление об использовании электронных таблиц Excel.

Предположим, что вы хотите арендовать новый станок. Стоимость годовой аренды станка 400 000 дол., и договор нужно подписать на несколько лет. Поэтому, даже не достигнув , вы всё равно не сможете сразу вернуть станок. Вы собираетесь подписать договор, думая, что современное оборудование позволит сэкономить на трудозатратах и стоимости сырья и материалов, а также считаете, что материально-техническое обслуживание нового станка обойдется дешевле.

Скачать заметку в формате , примеры в формате

Ваши калиброванные специалисты по оценке дали следующие интервалы значений ожидаемой экономии и годового объема производства:

Годовая экономия составит: (MS + LS + RMS) х PL

Конечно, этот пример слишком прост, чтобы быть реалистичным. Объем производства каждый год меняется, какие-то затраты снизятся, когда рабочие окончательно освоят новый станок, и т.д. Но мы в этом примере намеренно пожертвовали реализмом ради простоты.

Если мы возьмем медиану (среднее) каждого из интервалов значений, то получим годовую экономию: (15 + 3 + 6) х 25 000 = 600 000 (дол.)

Похоже, что мы не только добились безубыточности, но и получили кое-какую прибыль, но не забывайте – существуют неопределенности. Как же оценить рискованность этих инвестиций? Давайте, прежде всего, определим, что такое риск в данном контексте. Чтобы получить риск, мы должны наметить будущие результаты с присущими им неопределенностями, причем какие-то из них – с вероятностью понести ущерб, поддающийся количественному определению. Один из способов взглянуть на риск – представить вероятность того, что мы не добьемся безубыточности, то есть что наша экономия окажется меньше годовой стоимости аренды станка. Чем больше нам не хватит на покрытие расходов на аренду, тем больше мы потеряем. Сумма 600 000 дол. – это медиана интервала. Как определить реальный интервал значений и рассчитать по нему вероятность того, что мы не достигнем точки безубыточности?

Поскольку точные данные отсутствуют, нельзя выполнить простые расчеты для ответа на вопрос, сможем ли мы добиться требуемой экономии. Есть методы, позволяющие при определенных условиях найти интервал значений результирующего параметра по диапазонам значений исходных данных, но для большинства проблем из реальной жизни такие условия, как правило, не существуют. Как только мы начинаем суммировать и умножать разные типы распределений, задача обычно превращается в то, что математики называют неразрешимой или не имеющей решения обычными математическими методами проблемой. Поэтому взамен мы пользуемся методом прямого подбора возможных вариантов, ставшим возможным благодаря появлению компьютеров. Из имеющихся интервалов мы выбираем наугад множество (тысячи) точных значений исходных параметров и рассчитываем множество точных значений искомого показателя.

Моделирование методом Монте-Карло – превосходный способ решения подобных проблем. Мы должны лишь случайным образом выбрать в указанных интервалах значения, подставить их в формулу для расчета годовой экономии и рассчитать итог. Одни результаты превысят рассчитанную нами медиану 600 000 дол., а другие окажутся ниже. Некоторые будут даже ниже требуемых для безубыточности 400 000 дол.

Вы легко сможете осуществить моделирование методом Монте-Карло на персональном компьютере с помощью программы Excel, но для этого понадобится чуть больше информации, чем 90%-ный доверительный интервал. Необходимо знать форму кривой распределения. Для разных величин больше подходят кривые одной формы, чем другой. В случае 90%-ного доверительного интервала обычно используется кривая нормального (гауссова) распределения. Это хорошо знакомая всем колоколообразная кривая, на которой большинство возможных значений результатов группируются в центральной части графика и лишь немногие, менее вероятные, распределяются, сходя на нет к его краям (рис. 1).

Вот как выглядит нормальное распределение:

Рис.1. Нормальное распределение. По оси абсцисс число сигм.

Особенности:

  • значения, располагающиеся в центральной части графика, более вероятны, чем значения по его краям;
  • распределение симметрично; медиана находится точно посредине между верхней и нижней границами 90%-ного доверительного интервала (CI);
  • «хвосты» графика бесконечны; значения за пределами 90%-ного доверительного интервала маловероятны, но все же возможны.

Для построения нормального распределения в Excel можно воспользоваться функцией =НОРМРАСП(Х; Среднее; Стандартное_откл; Интегральная), где
Х – значение, для которого строится нормальное распределение;
Среднее – среднее арифметическое распределения; в нашем случае = 0;
Стандартное_откл – стандартное отклонение распределения; в нашем случае = 1;
Интегральная – логическое значение, определяющее форму функции; если аргумент «интегральная» имеет значение ИСТИНА, функция НОРМРАСП возвращает интегральную функцию распределения; если этот аргумент имеет значение ЛОЖЬ, возвращается функция плотности распределения; в нашем случае = ЛОЖЬ.

Говоря о нормальном распределении, необходимо упомянуть о таком связанном с ним понятии, как стандартное отклонение. Очевидно, не все обладают интуитивным пониманием, что это такое, но поскольку стандартное отклонение можно заменить числом, рассчитанным по 90%-ному доверительному интервалу (смысл которого интуитивно понимают многие), я не буду здесь подробно на нем останавливаться. Рисунок 1 показывает, что в одном 90%-ном доверительном интервале насчитывается 3,29 стандартного отклонения, поэтому нам просто нужно будет сделать преобразование.

В нашем случае следует создать в электронной таблице генератор случайных чисел для каждого интервала значений. Начнем, например, с MS – экономии на материально-техническом обслуживании. Воспользуемся формулой Excel: =НОРМОБР(вероятность;среднее;стандартное_откл), где
Вероятность – вероятность, соответствующая нормальному распределению;
Среднее – среднее арифметическое распределения;
Стандартное_откл – стандартное отклонение распределения.

В нашем случае:
Среднее (медиана) = (Верхняя граница 90%-ного CI + Нижняя граница 90%-ного СI)/2;
Стандартное отклонение = (Верхняя граница 90%-ного CI – Нижняя граница 90%-ного СI)/3,29.

Для параметра MS формула имеет вид: =НОРМОБР(СЛЧИС();15;(20-10)/3,29), где
СЛЧИС – функция, генерирующая случайные числа в диапазоне от 0 до 1;
15 – среднее арифметическое диапазона MS;
(20-10)/3,29 = 3,04 – стандартное отклонение; напомню, что смысл стандартного отклонения в следующем: в интервал 3,29*Стандарт_откл, расположенный симметрично относительного среднего, попадает 90% всех значений случайной величины (в нашем случае MS)

Распределение величины экономии на материально-техническом обслуживании для 100 случайных нормально распределенных значений:

Рис. 2. Вероятность распределения MS по диапазонам значений; о том, как построить такое распределение с помощью сводной таблицы см.

Поскольку мы использовали «лишь» 100 случайных значений, распределение получилось не таким уж и симметричным. Тем не менее, около 90% значений попали в диапазон экономии на MS от 10 до 20 долл. (если быть точным, то 91%).

Построим таблицу на основе доверительных интервалов параметров MS, LS, RMS и PL (рис. 3). Два последних столбца показывают результаты расчетов на основе данных других столбцов. В столбце «Общая экономия» показана годовая экономия, рассчитанная для каждой строки. Например, в случае реализации сценария 1 общая экономия составит (14,3 + 5,8 + 4,3) х 23 471 = 570 834 долл. Столбец «Достигается ли безубыточность?» вам на самом деле не нужен. Я включил его просто для информативности. Создадим в Excel 10 000 строк-сценариев.

Рис. 3. Расчет сценариев методом Монте-Карло в Excel

Чтобы оценить полученные результаты, можно использовать, например, сводную таблицу, которая позволяет подсчитать число сценариев в каждом 100-тысячном диапазоне. Затем вы строите график, отображающий результаты расчета (рис. 4). Этот график показывает, какая доля из 10 000 сценариев будут иметь годовую экономию в том или ином интервале значений. Например, около 3% сценариев дадут годовую экономию более 1М дол.

Рис. 4. Распределение общей экономии по диапазонам значений. По оси абсцисс отложены 100-тысячные диапазоны размера экономии, а по оси ординат доля сценариев, приходящихся на указанный диапазон

Из всех полученных значений годовой экономии примерно 15% будут меньше 400К дол. Это означает, что вероятность ущерба составляет 15%. Данное число и представляет содержательную оценку риска. Но риск не всегда сводится к возможности отрицательной доходности инвестиций. Оценивая размеры вещи, мы определяем ее высоту, массу, обхват и т.д. Точно так же существуют и несколько полезных показателей риска. Дальнейший анализ показывает: есть 4%-ная вероятность того, что завод вместо экономии будет терять ежегодно по 100К дол. Однако полное отсутствие доходов практически исключено. Вот что подразумевается под анализом риска – мы должны уметь рассчитывать вероятности ущерба разного масштаба. Если вы действительно измеряете риск, то должны делать именно это.

В некоторых ситуациях можно пойти более коротким путем. Если все распределения значений, с которыми мы работаем, будут нормальными и нам надо просто сложить интервалы этих значений (например, интервалы затрат и выгод) или вычесть их друг из друга, то можно обойтись и без моделирования методом Монте-Карло. Когда необходимо суммировать три вида экономии из нашего примера, следует провести простой расчет. Чтобы получить искомый интервал, используйте шесть шагов, перечисленных ниже:

1) вычтите среднее значение каждого интервала значений из его верхней границы; для экономии на материально-техническом обслуживании 20 – 15 = 5 (дол.), для экономии на трудозатратах – 5 дол. и для экономии на сырье и материалах – 3 дол.;

2) возведите в квадрат результаты первого шага 5 2 = 25 (дол.) и т.д.;

3) суммируйте результаты второго шага 25 + 25 + 9 = 59 (дол.);

4) извлеките квадратный корень из полученной суммы: получится 7,7 дол.;

5) сложите все средние значения: 15 + 3 + 6 = 24 (дол.);

6) прибавьте к сумме средних значений результат шага 4 и получите верхнюю границу диапазона: 24 + 7,7 = 31,7 дол.; вычтите из суммы средних значений результат шага 4 и получите нижнюю границу диапазона 24 – 7,7 = 16,3 дол.

Таким образом, 90%-ный доверительный интервал для суммы трех 90%-ных доверительных интервалов по каждому виду экономии составляет 16,3–31,7 дол.

Мы использовали следующее свойство: размах суммарного интервала равен квадратному корню из суммы квадратов размахов отдельных интервалов .

Иногда нечто похожее делают, суммируя все «оптимистические» значения верхней границы и «пессимистические» значения нижней границы интервала. В данном случае мы получили бы на основе наших трех 90%-ных доверительных интервалов суммарный интервал 11–37 дол. Этот интервал несколько шире, чем 16,3–31,7 дол. Когда такие расчеты выполняются при обосновании проекта с десятками переменных, расширение интервала становится чрезмерным, чтобы его игнорировать. Брать самые «оптимистические» значения для верхней границы и «пессимистические» для нижней – все равно что думать: бросив несколько игральных костей, мы во всех случаях получим только «1» или только «6». На самом же деле выпадет некое сочетание низких и высоких значений. Чрезмерное расширение интервала – распространенная ошибка, которая, несомненно, часто приводит к принятию необоснованных решений. В то же время описанный мной простой метод прекрасно работает, когда у нас есть несколько 90%-ных доверительных интервалов, которые необходимо суммировать.

Однако наша цель не только суммировать интервалы, но и умножить их на объем производства, значения которого также даны в виде диапазона. Простой метод суммирования годится только для вычитания или сложения интервалов значений.

Моделирование методом Монте-Карло требуется и тогда, когда не все распределения являются нормальными. Хотя другие типы распределений не входят в предмет данной книги, упомянем о двух из них - равномерном и бинарном (рис. 5, 6).

Рис. 5. Равномерное распределение (не идеальное, а построенное с помощью функции СЛЧИС в Excel)

Особенности:

  • вероятность всех значений одинакова;
  • распределение симметрично, без перекосов; медиана находится точно посредине между верхней и нижней границами интервала;
  • значения за пределами интервала невозможны.

Для построения данного распределения в Excel была использована формула: СЛЧИС()*(UB – LB) + LB, где UB – верхняя граница; LB – нижняя граница; с последующим разбиением всех значений на диапазоны с помощью сводной таблицы.

Рис. 6. Бинарное распределение (распределение Бернулли)

Особенности:

  • возможны только два значения;
  • существует единственная вероятность одного значения (в данном случае 60%); вероятность другого значения равна единице минус вероятность первого значения

Для построения случайного распределения данного вида в Excel использовалась функция: =ЕСЛИ(СЛЧИС()<Р;1;0), где Р - вероятность выпадения «1»; вероятность выпадения «0» равна 1–Р; с последующим разбиением всех значений на два значения с помощью сводной таблицы.

Метод впервые использовал математик Станислав Улам (см. ).

Дуглас Хаббард далее перечисляет несколько программ, предназначенных для моделирования методом Монте-Карло. Среди них и Crystal Ball компании Decisioneering, Inc, Денвер, штат Колорадо. Книга на английском языке была издана в 2007 г. Сейчас же эта программа принадлежит уже Oracle . Демо-версия программы доступна для скачивания с сайта компании. О ее возможностях мы и погорим .

См. главу 5 упоминавшейся книги Дугласа Хаббарда

Здесь Дуглас Хаббард под размахом понимает разность между верхней границей 90%-ного доверительного интервала и средним значением этого интервала (или между средним значением и нижней границей, так как распределение симметрично). Обычно под размахом понимают разность между верхней и нижней границами.

6. Моделями типа «черный ящик являются»

1) модели мышления

2) модели, описывающие зависимость параметров состояния объекта от входных параметров

3) модели «аварийного» ящика на самолетах

4) модели, описывающие входные и выходные параметры объекта без учета внутренней структуры объекта

Определение целей моделирования осуществляется на этапе

1) разработки концептуальной модели

2) разработки математической модели

3) разработки имитационной модели

  1. постановки задачи

Поставьте в соответствие друг другу определения для представленной таблицы моделирования

Среди общепринятых классификаций видов моделей отсутствует их классификация на

1) дискретные – непрерывные

2) логические – сенсорные

3) детерминированные – стохастические

  1. статические – динамические

10. В отношении «объект-модель» не находятся понятия

1) микромир – квантовая механика

2) книга – абзац

3) знания – оценка

4) дом – план

Компьютерные сети

План

  1. Основные понятия компьютерных сетей
  2. Топология компьютерных сетей
  3. Структура вычислительной сети
  4. Локальные сети
  5. Организация работы в локальной сети
  6. Возможности сети Интернет
  7. Службы Интернета
  8. Сетевая операционная система
  9. Тесты для самопроверки

Основные понятия компьютерных сетей

Информационно – вычислительная сеть - ИВС (часто используется название - вычислительная сеть, компьютерная сеть), представляет собой систему компьютеров, объединенных каналами передачи данных.

Канал (channel) - средство или путь, по которому передаются сигналы либо данные.

Основное назначение ИВС - обеспечение различных информационно – вычислительных услуг пользователям сети путем организации их удобного доступа к ресурсам, распределенным в этой сети. В последние годы подавляющая часть услуг сетей лежит в сфере именно информационного обслуживания. В частности, на базе ИВС обеспечивается решение следующих задач: хранение, обработка данных и передача данных и результатов обработки пользователям.

Решение этих задач обеспечивается:

  • распределенными в сети аппаратными, программными и информационными ресурсами;
  • дистанционным доступом пользователя к любым видам этих ресурсов;
  • специализацией отдельных узлов сети на решении задач определенного класса;
  • решением сложных задач совместными усилиями нескольких узлов сети.

Первые ИВС появились в 60-х годах, и это было технической революцией, сравнимой по значимости с появлением первых ЭВМ. В них была предпринята попытка объединения технологий сбора, хранения, передачи и обработки информации на ЭВМ с техникой связи.

Одной из первых сетей, оказавших влияние на дальнейшее развитие, явилась сеть АРПА. Она была создана пятидесятью университетами и фирмами США. В последнее время она охватывает всю территорию США, часть Европы и Азии. Её основное значение состоит в том, что она доказала техническую возможность и экономическую целесообразность разработки и эксплуатации больших сетей.

В 60-х годах в Европе были разработаны и внедрены международные сети EIN и Евронет, затем стали появляться национальные сети. В СССР первая сеть стала рентабельной в 60-х годах в Академии наук в Ленинграде. В 1985 г. к ней подсоединилась региональная подсеть «Северо-запад» с академическими центрами в Риге и Москве.

В 1980 г. сдана в эксплуатацию система телеобработки статистической информации (СТОСИ), обслуживающая ГВЦ ЦСУ СССР в Москве и республиканский ВЦ в союзных республиках.

В настоящее время в мире зарегистрировано более 200 глобальных сетей, (при этом более четверти из них – созданы в США). С появлением микроЭВМ и ПЭВМ появились локальные вычислительные сети (ЛВС). Объединение ЛВС с глобальными сетями позволило получить доступ к мировым информационным ресурсам.

В общем случае, для создания компьютерных сетей необходимо специальное аппаратное обеспечение (сетевое оборудование ) и специальное программное обеспечение (сетевые программные средства ).

Технология работы в сети и возникающие при этом возможности зависят как от способов организации каналов связи, так и от программного обеспечения. Можно выделить следующие виды каналов связи и организуемых с их помощью сетей.

Простейшая компьютерная сеть образуется при соединении двух недалеко отстоящих друг от друга компьютеров (в пределах 10 - 20 м) с помощью специального кабеля, называемого нуль-модемом, который подключается к последовательным или параллельным портам обоих компьютеров. Такое временное соединение называется прямым компьютерным соединением (ПКС). В настоящее время получили развитие инфракрасные порты, позволяющие организовать соединение напрямую, без кабеля. ПКС используется в основном для обмена информацией между портативным и стационарным персональным компьютером.

Локальная сеть представляет собой расположенные на небольшом расстоянии компьютеры (на удалении в пределах 50-100 м внутри одного или соседних зданий), между которыми необходимо организовать постоянный информационный обмен, стационарно соединенные специально предназначенными для этих целей кабелями. Благодаря относительно небольшим длинам линий связи, по локальной сети можно передавать информацию в цифровом виде с высокой скоростью. Сеть указанного типа называется локальной вычислительной сетью (ЛВС) или по-английски LAN - Local Area Net .

Распределенная сеть объединяет значительно удаленные друг от друга компьютеры (например, расположенные в разных концах города или в разных городах), между которыми необходимо организовать постоянный обмен большими потоками информации; компьютеры в этих сетях соединяются специальными постоянно действующими выделенными каналами . Физически выделенные каналы могут реализовываться с помощью телефонных каналов или оптических кабелей, а также с помощью спутниковых или радиоканалов. С помощью выделенных каналов обычно соединяются удаленные компьютеры одной организации (например, компьютеры центрального офиса банка с компьютерами в его филиалах). Сети, связывающие значительно удаленные компьютеры, называются распределенными. Доступ к распределенным сетям организаций ограничен определенным кругом лиц, для которых работа в таких сетях связана с выполнением их должностных обязанностей. По своему функциональному назначению сети подобного типа эквиваленты локальным и называются региональными или по-английски Metropolitan Area Net - MAN .

Региональная сеть организации, в которой создана специальная коммуникационная система обмена сообщениями (электронная почта, факс, совместная работа над документами), называется корпоративной .

Глобальная сеть или Wide Area Net WAN – это сеть компьютеров, распределенных по всему миру и постоянно связанных каналами с очень высокой пропускной способностью, на которых имеется большой объем разнообразной информации, доступной на коммерческой основе всем желающим.

Временная связь между удаленными ПК с помощью обычной телефонной сети через АТС может быть установлена с помощью устройства, называемого модемом (факс-модем). Такой способ связи называется связью по коммутируемому каналу . С помощью модема можно организовать информационный обмен между «обычными компьютерами», можно подключиться к локальной сети офиса или к глобальной сети.

Наряду с сетями, объединяющими несколько компьютеров, существуют сети терминалов, или терминальные сети , связывающие мощные компьютеры (мэйнфреймы) со специальными устройствами - терминалами, которые могут быть достаточно сложными, но вне сети их работа или невозможна, или вообще теряет смысл. Примерами терминальных устройств и терминальных сетей могут служить сеть банкоматов, сеть кассовых аппаратов в магазинах и др.