§2.2. Линейная зависимость векторов. Базис и координаты. Линейно зависимые и линейно независимые вектора Выяснить является ли система векторов линейно зависимой

29.02.2024 Природа

Введенные нами линейные операции над векторами дают возможность составлять различные выражения для векторных величин и преобразовывать их при помощи установленных для этих операций свойств.

Исходя из заданного набора векторов а 1 , ..., а n , можно составить выражение вида

где а 1 , ..., а n - произвольные действительные числа. Это выражение называют линейной комбинацией векторов а 1 , ..., а n . Числа α i , i = 1, n , представляют собой коэффициенты линейной комбинации . Набор векторов называют еще системой векторов .

В связи с введенным понятием линейной комбинации векторов возникает задача описания множества векторов, которые могут быть записаны в виде линейной комбинации данной системы векторов а 1 , ..., а n . Кроме того, закономерны вопросы об условиях, при которых существует представление вектора в виде линейной комбинации, и о единственности такого представления.

Определение 2.1. Векторы а 1 , ..., а n называют линейно зависимыми , если существует такой набор коэффициентов α 1 , ... , α n , что

α 1 a 1 + ... + α n а n = 0 (2.2)

и при этом хотя бы один из этих коэффициентов ненулевой. Если указанного набора коэффициентов не существует, то векторы называют линейно независимыми .

Если α 1 = ... = α n = 0, то, очевидно, α 1 а 1 + ... + α n а n = 0. Имея это в виду, можем сказать так: векторы а 1 , ..., а n линейно независимы, если из равенства (2.2) вытекает, что все коэффициенты α 1 , ... , α n равны нулю.

Следующая теорема поясняет, почему новое понятие названо термином "зависимость" (или "независимость"), и дает простой критерий линейной зависимости.

Теорема 2.1. Для того чтобы векторы а 1 , ..., а n , n > 1, были линейно зависимы, необходимо и достаточно, чтобы один из них являлся линейной комбинацией остальных.

◄ Необходимость. Предположим, что векторы а 1 , ..., а n линейно зависимы. Согласно определению 2.1 линейной зависимости, в равенстве (2.2) слева есть хотя бы один ненулевой коэффициент, например α 1 . Оставив первое слагаемое в левой части равенства, перенесем остальные в правую часть, меняя, как обычно, у них знаки. Разделив полученное равенство на α 1 , получим

a 1 =-α 2 /α 1 ⋅ a 2 - ... - α n /α 1 ⋅ a n

т.е. представление вектора a 1 в виде линейной комбинации остальных векторов а 2 , ..., а n .

Достаточность. Пусть, например, первый вектор а 1 можно представить в виде линейной комбинации остальных векторов: а 1 = β 2 а 2 + ... + β n а n . Перенеся все слагаемые из правой части в левую, получим а 1 - β 2 а 2 - ... - β n а n = 0, т.е. линейную комбинацию векторов а 1 , ..., а n с коэффициентами α 1 = 1, α 2 = - β 2 , ..., α n = - β n , равную нулевому вектору. В этой линейной комбинации не все коэффициенты равны нулю. Согласно определению 2.1, векторы а 1 , ..., а n линейно зависимы.

Определение и критерий линейной зависимости сформулированы так, что подразумевают наличие двух или более векторов. Однако можно также говорить о линейной зависимости одного вектора. Чтобы реализовать такую возможность, нужно вместо "векторы линейно зависимы" говорить "система векторов линейно зависима". Нетрудно убедиться, что выражение "система из одного вектора линейно зависима" означает, что этот единственный вектор является нулевым (в линейной комбинации имеется только один коэффициент, и он не должен равняться нулю).

Понятие линейной зависимости имеет простую геометрическую интерпретацию. Эту ин-терпретацию проясняют следующие три утверждения.

Теорема 2.2. Два вектора линейно зависимы тогда и только тогда, когда они коллинеарны.

◄ Если векторы а и b линейно зависимы, то один из них, например а, выражается через другой, т.е. а = λb для некоторого действительного числа λ. Согласно определению 1.7 произведения вектора на число, векторы а и b являются коллинеарными.

Пусть теперь векторы а и b коллинеарны. Если они оба нулевые, то очевидно, что они линейно зависимы, так как любая их линейная комбинация равна нулевому вектору. Пусть один из этих векторов не равен 0, например вектор b. Обозначим через λ отношение длин векторов: λ = |а|/|b|. Коллинеарные векторы могут быть однонаправленными или противоположно направленными . В последнем случае у λ изменим знак. Тогда, проверяя определение 1.7, убеждаемся, что а = λb. Согласно теореме 2.1, векторы а и b линейно зависимы.

Замечание 2.1. В случае двух векторов, учитывая критерий линейной зависимости, доказанную теорему можно переформулировать так: два вектора коллинеарны тогда и только тогда, когда один из них представляется как произведение другого на число. Это является удобным критерием коллинеарности двух векторов.

Теорема 2.3. Три вектора линейно зависимы тогда и только тогда, когда они компланарны .

◄ Если три вектора а, Ь, с линейно зависимы, то, согласно теореме 2.1, один из них, например а, является линейной комбинацией остальных: а = βb + γс. Совместим начала векторов b и с в точке A. Тогда векторы βb, γс будут иметь общее начало в точке A и по правилу параллелограмма их сумма, т.е. вектор а, будет представлять собой вектор с началом A и концом , являющимся вершиной параллелограмма, построенного на векторах-слагаемых. Таким образом, все векторы лежат в одной плоскости, т. е. компланарны.

Пусть векторы а, b, с компланарны. Если один из этих векторов является нулевым, то очевидно, что он будет линейной комбинацией остальных. Достаточно все коэффициенты линейной комбинации взять равными нулю. Поэтому можно считать, что все три вектора не являются нулевыми. Совместим начала этих векторов в общей точке O. Пусть их концами будут соот-ветственно точки A, B, C (рис. 2.1). Через точку C проведем прямые, параллельные прямым, проходящим через пары точек O, A и O, B. Обозначив точки пересечения через A" и B", получим параллелограмм OA"CB", следовательно, OC" = OA" + OB" . Вектор OA" и ненулевой вектор а= OA коллинеарны, а потому первый из них может быть получен умножением второго на действительное число α:OA" = αOA . Аналогично OB" = βOB , β ∈ R. В результате получаем,что OC" = α OA + βOB , т.е. вектор с является линейной комбинацией векторов а и b. Согласно теореме 2.1, векторы a, b, с являются линейно зависимыми.

Теорема 2.4. Любые четыре вектора линейно зависимы.

◄ Доказательство проводим по той же схеме, что и в теореме 2.3. Рассмотрим произвольные четыре вектора a, b, с и d. Если один из четырех векторов является нулевым, либо среди них есть два коллинеарных вектора, либо три из четырех векторов компланарны, то эти четыре вектора линейно зависимы. Например, если векторы а и b коллинеарны, то мы можем составить их линейную комбинацию αa + βb = 0 с ненулевыми коэффициентами, а затем в эту комбинацию добавить оставшиеся два вектора, взяв в качестве коэффициентов нули. Получим равную 0 линейную комбинацию четырех векторов, в которой есть ненулевые коэффициенты.

Таким образом, мы можем считать, что среди выбранных четырех векторов нет нулевых, никакие два не коллинеарны и никакие три не являются компланарными. Выберем в качестве их общего начала точку О. Тогда концами векторов a, b, с, d будут некоторые точки A, B, С, D (рис. 2.2). Через точку D проведем три плоскости, параллельные плоскостям ОВС, OCA, OAB, и пусть A", B", С" - точки пересечения этих плоскостей с прямыми OA, OB, ОС соответственно. Мы получаем параллелепипед OA"C"B"C"B"DA", и векторы a, b, с лежат на его ребрах, выходящих из вершины О. Так как четырехугольник OC"DC" является параллелограммом, то OD = OC" + OC" . В свою очередь, отрезок ОС" является диагональю параллелограмма OA"C"B", так что OC" = OA" + OB" , а OD = OA" + OB" + OC" .

Остается заметить, что пары векторов OA ≠ 0 и OA" , OB ≠ 0 и OB" , OC ≠ 0 и OC" коллинеарны, и, следовательно, можно подобрать коэффициенты α, β, γ так, что OA" = αOA , OB" = βOB и OC" = γOC . Окончательно получаем OD = αOA + βOB + γOC . Следовательно, вектор OD выражается через остальные три вектора, а все четыре вектора, согласно теореме 2.1, линейно зависимы.

Определение 1 . Линейной комбинацией векторовназывается сумма произведений этих векторов на скаляры
:

Определение 2 . Система векторов
называется линейно зависимой системой, если линейная комбинация их (2.8) обращается в нуль:

причем среди чисел
существует хотя бы одно, отличное от нуля.

Определение 3 . Векторы
называются линейно независимыми, если их линейная комбинация (2.8) обращается в нуль лишь в случае, когда все числа.

Из этих определений можно получить следующие следствия.

Следствие 1 . В линейно зависимой системе векторов хотя бы один вектор может быть выражен как линейная комбинация остальных.

Доказательство . Пусть выполнено (2.9) и пусть для определенности, коэффициент
. Имеем тогда:
. Заметим, что справедливо и обратное утверждение.

Следствие 2. Если система векторов
содержит нулевой вектор, то эта система (обязательно) линейно зависима – доказательство очевидно.

Следствие 3 . Если средиn векторов
какие либоk (
) векторов линейно зависимы, то и всеn векторов линейно зависимы (опустим доказательство).

2 0 . Линейные комбинации двух, трех и четырех векторов . Рассмотрим вопросы линейной зависимости и независимости векторов на прямой, плоскости и в пространстве. Приведем соответствующие теоремы.

Теорема 1 . Для того чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны.

Необходимость . Пусть векторыилинейно зависимы. Это означает, что их линейная комбинация
=0 и (ради определенности)
. Отсюда следует равенство
, и (по определению умножения вектора на число) векторыиколлинеарны.

Достаточность . Пусть векторыиколлинеарны () (предполагаем, что они отличны от нулевого вектора; иначе их линейная зависимость очевидна).

По теореме (2.7) (см. §2.1,п.2 0) тогда
такое, что
, или
– линейная комбинация равна нулю, причем коэффициент приравен 1 – векторыилинейно зависимы.

Из этой теоремы вытекает следующее следствие.

Следствие . Если векторыине коллинеарны, то они линейно независимы.

Теорема 2 . Для того чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны.

Необходимость . Пусть векторы,илинейно зависимы. Покажем, что они компланарны.

Из определения линейной зависимости векторов следует существование чисел
итаких, что линейная комбинация
, и при этом (для определенности)
. Тогда из этого равенства можно выразить вектор:=
, то есть векторравен диагонали параллелограмма, построенного на векторах, стоящих в правой части этого равенства (рис.2.6). Это означает, что векторы,илежат в одной плоскости.

Достаточность . Пусть векторы,икомпланарны. Покажем, что они линейно зависимы.

Исключим случай коллинеарности какой либо пары векторов (ибо тогда эта пара линейно зависима и по следствию 3 (см.п.1 0) все три вектора линейно зависимы). Заметим, что такое предположение исключает также существование нулевого вектора среди указанных трех.

Перенесем три компланарных вектора в одну плоскость и приведем их к общему началу. Через конец вектора проведем прямые, параллельные векторами; получим при этом векторыи(рис.2.7) – их существование обеспечено тем, что векторыине коллинеарные по предположению векторы. Отсюда следует, что вектор=+. Переписав это равенство в виде (–1)++=0, заключаем, что векторы,илинейно зависимы.

Из доказанной теоремы вытекает два следствия.

Следствие 1 . Пустьине коллинеарные векторы, вектор– произвольный, лежащий в плоскости, определяемой векторамии, вектор. Существуют тогда числаитакие, что

=+. (2.10)

Следствие 2 . Если векторы,ине компланарны, то они линейно независимы.

Теорема 3 . Любые четыре вектора линейно зависимы.

Доказательство опустим; с некоторыми изменениями оно копирует доказательство теоремы 2. Приведем следствие из этой теоремы.

Следствие . Для любых некомпланарных векторов,,и любого вектора
итакие, что

. (2.11)

Замечание . Для векторов в (трехмерном) пространстве понятия линейной зависимости и независимости имеют, как это следует из приведенных выше теорем 1-3, простой геометрический смысл.

Пусть имеются два линейно зависимых вектора и. В таком случае один из них является линейной комбинацией второго, то есть просто отличается от него численным множителем (например,
). Геометрически это означает, что оба вектора находятся на общей прямой; они могут иметь одинаковое или противоположное направления (рис.2.8 хх).

Если же два вектора расположены под углом друг к другу (рис.2.9 хх), то в этом случае нельзя получить один из них умножением другого на число – такие векторы линейно независимы. Следовательно, линейная независимость двух векторов иозначает, что эти векторы не могут быть уложены на одну прямую.

Выясним геометрический смысл линейной зависимости и независимости трех векторов.

Пусть векторы ,илинейно зависимы и пусть (для определенности) векторявляется линейной комбинацией векторови, то есть расположен в плоскости, содержащей векторыи. Это означает, что векторы,илежат в одной плоскости. Справедливо и обратное утверждение: если векторы,илежат в одной плоскости, то они линейно зависимы.

Таким образом, векторы ,илинейно независимы в том и только в том случае, если они не лежат в одной плоскости.

3 0 . Понятие базиса . Одним из важнейших понятий линейной и векторной алгебры является понятие базиса. Введем определения.

Определение 1 . Пара векторов называется упорядоченной, если указано, какой вектор этой пары считается первым, а какой вторым.

Определение 2. Упорядоченная пара,неколлинеарных векторов называется базисом на плоскости, определяемой заданными векторами.

Теорема 1 . Всякий векторна плоскости может быть представлен как линейная комбинация базисной системы векторов,:

(2.12)

и это представление единственно.

Доказательство . Пусть векторыиобразуют базис. Тогда любой векторможно представить в виде
.

Для доказательства единственности предположим, что имеется еще одно разложение
. Имеем тогда=0, причем хотя бы одна из разностей отлична от нуля. Последнее означает, что векторыилинейно зависимы, то есть коллинеарны; это противоречит утверждению, что они образуют базис.

Но тогда – разложение единственно.

Определение 3 . Тройка векторов называется упорядоченной, если указано, какой вектор ее считается первым, какой вторым, а какой третьим.

Определение 4 . Упорядоченная тройка некомпланарных векторов называется базисом в пространстве.

Здесь также справедлива теорема разложения и единственности.

Теорема 2 . Любой векторможет быть представлен как линейная комбинация базисной системы векторов,,:

(2.13)

и это представление единственно (опустим доказательство теоремы).

В разложениях (2.12) и (2.13) величины называются координатами векторав заданном базисе (точнее, аффинными координатами).

При фиксированном базисе
и
можно писать
.

Например, если задан базис
и дано, что
, то это означает, что имеет место представление (разложение)
.

4 0 . Линейные операции над векторами в координатной форме . Введение базиса позволяет линейные операции над векторами заменить обычными линейными операциями над числами – координатами этих векторов.

Пусть задан некоторый базис
. Очевидно, задание координат вектора в этом базисе полностью определяет сам вектор. Имеют место следующие предложения:

а) два вектора
и
равны тогда и только тогда, когда равны их соответственные координаты:

б) при умножении вектора
на числоего координаты умножаются на это число:

; (2.15)

в) при сложении векторов складываются их соответственные координаты:

Доказательства этих свойств опустим; докажем лишь для примера свойство б). Имеем

==

Замечание . В пространстве (на плоскости) можно выбрать бесконечно много базисов.

Приведем пример перехода от одного базиса к другому, установим соотношения между координатами вектора в различных базисах.

Пример 1 . В базисной системе
заданы три вектора:
,
и
. В базисе,,векторимеет разложение. Найти координаты векторав базисе
.

Решение . Имеем разложения:
,
,
; следовательно,
=
+2
+
= =
, то есть
в базисе
.

Пример 2 . Пусть в некотором базисе
четыре вектора заданы своими координатами:
,
,
и
.

Выяснить, образуют ли векторы
базис; в случае положительного ответа найти разложение векторав этом базисе.

Решение . 1) векторы образуют базис, если они линейно независимы. Составим линейную комбинацию векторов
(
) и выясним, при каких
иона обращается в нуль:
=0. Имеем:

=
+
+
=

По определению равенства векторов в координатной форме получим следующую систему (линейных однородных алгебраических) уравнений:
;
;
, определитель которой
=1
, то есть система имеет (лишь) тривиальное решение
. Это означает линейную независимость векторов
и, следовательно, они образуют базис.

2) разложим вектор в этом базисе. Имеем:=
или в координатной форме.

Переходя к равенству векторов в координатной форме, получим систему линейных неоднородных алгебраических уравнений:
;
;
. Решая ее (например, по правилу Крамера), получим:
,
,
и (
)
. Имеем разложение векторав базисе
:=.

5 0 . Проекция вектора на ось. Свойства проекций. Пусть имеется некоторая осьl , то есть прямая с выбранным на ней направлением и пусть задан некоторый вектор.Определим понятие проекции векторана осьl .

Определение . Проекцией векторана осьl называется произведение модуля этого вектора на косинус угла между осьюl и вектором (рис.2.10):

. (2.17)

Следствием этого определения является утверждение о том, что равные векторы имеют равные проекции (на одну и ту же ось).

Отметим свойства проекций.

1) проекция суммы векторов на некоторую ось l равна сумме проекций слагаемых векторов на ту же ось:

2) проекция произведения скаляра на вектор равна произведению этого скаляра на проекцию вектора на ту же ось:

=
. (2.19)

Следствие . Проекция линейной комбинации векторов на ось равна линейной комбинации их проекций:

Доказательства свойств опустим.

6 0 . Прямоугольная декартова система координат в пространстве .Разложение вектора по ортам осей. Пусть в качестве базиса выбраны три взаимно перпендикулярных орта; для них вводим специальные обозначения
. Поместив их начала в точкуO , направим по ним (в соответствии с ортами
) координатные осиOx ,Oy иOz (ось с выбранным на ней положительным направлением, началом отсчета и единицей длины называется координатной осью).

Определение . Упорядоченная система трех взаимно перпендикулярных координатных осей с общим началом и общей единицей длины называется прямоугольной декартовой системой координат в пространстве.

Ось Ox называется осью абсцисс,Oy – осью ординат иOz осью аппликат.

Займемся разложением произвольного вектора по базису
. Из теоремы (см.§2.2,п.3 0 , (2.13)) следует, что
может быть и единственным образом разложен по базису
(здесь вместо обозначения координат
употребляют
):

. (2.21)

В (2.21)
суть (декартовы прямоугольные) координаты вектора. Смысл декартовых координат устанавливает следующая теорема.

Теорема . Декартовы прямоугольные координаты
вектораявляются проекциями этого вектора соответственно на осиOx ,Oy иOz .

Доказательство. Поместим векторв начало системы координат – точкуO . Тогда его конец будет совпадать с некоторой точкой
.

Проведем через точку
три плоскости, параллельные координатным плоскостямOyz ,Oxz иOxy (рис.2.11 хх). Получим тогда:

. (2.22)

В (2.22) векторы
и
называются составляющими вектора
по осямOx ,Oy иOz .

Пусть через
иобозначены соответственно углы, образованные векторомс ортами
. Тогда для составляющих получим следующие формулы:

=
=
,
=

=
,
=

=
(2.23)

Из (2.21), (2.22) (2.23) находим:

=
=
;=
=
;=
=
(2.23)

– координаты
вектораесть проекции этого вектора на координатные осиOx ,Oy иOz соответственно.

Замечание . Числа
называются направляющими косинусами вектора.

Модуль вектора (диагональ прямоугольного параллелепипеда) вычисляется по формуле:

. (2.24)

Из формул (2.23) и (2.24) следует, что направляющие косинусы могут быть вычислены по формулам:

=
;
=
;
=
. (2.25)

Возводя обе части каждого из равенств в (2.25) и складывая почленно левые и правые части полученных равенств, придем к формуле:

– не любые три угла образуют некоторое направление в пространстве, но лишь те, косинусы которых связаны соотношением (2.26).

7 0 . Радиус-вектор и координаты точки .Определение вектора по его началу и концу . Введем определение.

Определение . Радиусом-вектором (обозначается) называется вектор, соединяющий начало координатO с этой точкой (рис.2.12 хх):

. (2.27)

Любой точке пространства соответствует определенный радиус-вектор (и обратно). Таким образом, точки пространства представляются в векторной алгебре их радиус-векторами.

Очевидно, координаты
точкиM являются проекциями ее радиус-вектора
на координатные оси:

(2.28’)

и, таким образом,

(2.28)

– радиус-вектор точки есть вектор, проекции которого на оси координат равны координатам этой точки. Отсюда следует две записи:
и
.

Получим формулы для вычисления проекций вектора
по координатам его начала – точке
и конца – точке
.

Проведем радиус-векторы
и вектор
(рис.2.13). Получим, что

=
=(2.29)

– проекции вектора на координатные орты равны разностям соответствующих координат конца и начала вектора.

8 0 . Некоторые задачи на декартовы координаты .

1) условия коллинеарности векторов . Из теоремы (см.§2.1,п.2 0 , формула (2.7)) следует, что для коллинеарности векторовинеобходимо и достаточно, чтобы выполнялось соотношение:=. Из этого векторного равенства получаем три в координатной форме равенства:, откуда следует условие коллинеарности векторов в координатной форме:

(2.30)

– для коллинеарности векторов инеобходимо и достаточно, чтобы их соответствующие координаты были пропорциональны.

2) расстояние между точками . Из представления (2.29) следует, что расстояние
между точками
и
определяется формулой

=
=. (2.31)

3) деление отрезка в данном отношении . Пусть даны точки
и
и отношение
. Нужно найти
– координаты точкиM (рис.2.14).

Имеем из условия коллинеарности векторов:
, откуда
и

. (2.32)

Из (2.32) получим в координатной форме:

Из формул (2.32’) можно получить формулы для вычисления координат середины отрезка
, полагая
:

Замечание . Будем считать отрезки
и
положительными или отрицательными в зависимости от того, совпадает их направление с направлением от начала
отрезка к концу
, или не совпадает. Тогда по формулам (2.32) – (2.32”) можно находить координат точки, делящей отрезок
внешним образом, то есть так, что делящая точкаM находится на продолжении отрезка
, а не внутри его. При этом конечно,
.

4) уравнение сферической поверхности . Составим уравнение сферической поверхности – геометрического места точек
, равноудаленных на расстояниеот некоторого фиксированного центра – точки
. Очевидно, что в данном случае
и с учетом формулы (2.31)

Уравнение (2.33) и есть уравнение искомой сферической поверхности.

Линейная зависимость и независимость векторов

Определения линейно зависимой и независимой систем векторов

Определение 22

Пусть имеем систему из n-векторов и имеем набор чисел
, тогда

(11)

называется линейной комбинацией данной системы векторов с данным набором коэффициентов.

Определение 23

Система векторов
называется линейно зависимой, если существует такой набор коэффициентов
, из которых хотя бы один не равен нулю, что линейная комбинация данной системы векторов с этим набором коэффициентов равна нулевому вектору:

Пусть
, тогда

Определение 24 (через представление одного вектора системы в виде линейной комбинации остальных)

Система векторов
называется линейно зависимой, если хотя бы один из векторов этой системы можно представить в виде линейной комбинации остальных векторов этой системы.

Утверждение 3

Определения 23 и 24 эквивалентны.

Определение 25 (через нулевую линейную комбинацию)

Система векторов
называется линейно независимой, если нулевая линейная комбинация этой системы возможна лишь при всех
равных нулю.

Определение 26 (через невозможность представления одного вектора системы в виде линейной комбинации остальных)

Система векторов
называется линейно независимой, если не один из векторов этой системы нельзя представить в виде линейной комбинации других векторов этой системы.

Свойства линейно зависимой и независимой систем векторов

Теорема 2 (нулевой вектор в системе векторов)

Если в системе векторов имеется нулевой вектор, то система линейно зависима.

 Пусть
, тогда .

Получим
, следовательно, по определению линейно зависимой системы векторов через нулевую линейную комбинацию (12) система линейно зависима. 

Теорема 3 (зависимая подсистема в системе векторов)

Если в системе векторов имеется линейно зависимая подсистема, то и вся система линейно зависима.

 Пусть
- линейно зависимая подсистема
, среди которых хотя бы одно не равно нулю:

Значит, по определению 23, система линейно зависима. 

Теорема 4

Любая подсистема линейно независимой системы линейно независима.

 От противного. Пусть система линейно независима и в ней имеется линейно зависимая подсистема. Но тогда по теореме 3 вся система будет также линейно зависимой. Противоречие. Следовательно, подсистема линейно независимой системы не может быть линейно зависимой. 

Геометрический смысл линейной зависимости и независимости системы векторов

Теорема 5

Два вектора и линейно зависимы тогда и только тогда, когда
.

Необходимость.

и - линейно зависимы
, что выполняется условие
. Тогда
, т.е.
.

Достаточность.

Линейно зависимы. 

Следствие 5.1

Нулевой вектор коллинеарен любому вектору

Следствие 5.2

Для того чтобы два вектора были линейно независимы необходимо и достаточно, чтобы был не коллинеарен .

Теорема 6

Для того чтобы система из трёх векторов была линейно зависима необходимо и достаточно, чтобы эти векторы были компланарными.

Необходимость.

- линейно зависимы, следовательно, один вектор можно представить в виде линейной комбинации двух других.

, (13)

где
и
. По правилу параллелограмма есть диагональ параллелограмма со сторонами
, но параллелограмм – плоская фигура
компланарны
- тоже компланарны.

Достаточность .

- компланарны. Приложим три вектора к точке О:

C

B`

– линейно зависимы 

Следствие 6.1

Нулевой вектор компланарен любой паре векторов.

Следствие 6.2

Для того чтобы векторы
были линейно независимы необходимо и достаточно, чтобы они были не компланарны.

Следствие 6.3

Любой вектор плоскости можно представить в виде линейной комбинации любых двух неколлинеарных векторов этой же плоскости.

Теорема 7

Любые четыре вектора в пространстве линейно зависимы.

 Рассмотрим 4 случая:

Проведем плоскость через векторы , затем плоскость через векторы и плоскость через векторы . Затем проведем плоскости, проходящие через точку D, параллельные парам векторов ; ; соответственно. По линиям пересечения плоскостей строим параллелепипед OB 1 D 1 C 1 ABDC .

Рассмотрим OB 1 D 1 C 1 – параллелограмм по построению по правилу параллелограмма
.

Рассмотрим OADD 1 – параллелограмм (из свойства параллелепипеда)
, тогда

EMBED Equation.3 .

По теореме 1
такие, что . Тогда
, и по определению 24 система векторов линейно зависимая. 

Следствие 7.1

Суммой трёх некомпланарных векторов в пространстве является вектор, совпадающий с диагональю параллелепипеда, построенного на этих трёх векторах, приложенных к общему началу, причём начало вектора суммы совпадает с общим началом этих трёх векторов.

Следствие 7.2

Если в пространстве взять 3 некомпланарных вектора, то любой вектор этого пространства можно разложить в линейную комбинацию данных трёх векторов.

Другими словами линейная зависимость группы векторов означает, что существует среди них вектор, который можно представить линейной комбинацией других векторов этой группы.

Допустим . Тогда

Следовательно вектор x линейно зависим из векторов этой группы.

Векторы x , y , ..., z называются линейно независимыми векторами , если из равенства (0) следует, что

α=β= ...= γ=0.

То есть группы векторов линейно независимы, если ни один вектор не может быть представлен линейной комбинацией других векторов этой группы.

Определение линейной зависимости векторов

Пусть заданы m векторов строк порядка n:

Сделав Гауссово исключение , приведем матрицу (2) к верхнему треугольному виду. Элементы последнего столбца изменяются только тогда, когда строки переставляются. После m шагов исключения получим:

где i 1 , i 2 , ..., i m - индексы строк, полученные при возможной перестановки строк. Рассматривая полученные строки из индексов строк исключаем те, которые соответствуют нулевым вектором строк. Оставшиеся строки образуют линейно независимые векторы. Отметим, что при составлении матрицы (2) изменяя последовательность векторов строк, можно получить другую группу линейно независимых векторов. Но подпространство, которую оба эти группы векторов образуют совпадают.

Определение 1. Система векторов называется линейно зависимой, если один из векторов системы можно представить в виде линейной комбинации остальных векторов системы, и линейно независимой - в противном случае.

Определение 1´. Система векторов называется линейно зависимой, если найдутся числа с 1 , с 2 , …, с k , не все равные нулю, такие, что линейная комбинация векторов с данными коэффициентами равна нулевому вектору: = , в противном случае система называется линейно независимой.

Покажем, что эти определения эквивалентны.

Пусть выполняется определение 1, т.е. один из векторов системы равен линейной комбинации остальных:

Линейная комбинация системы векторов равна нулевому вектору, причем не все коэффициенты этой комбинации равны нулю, т.е. выполняется определение 1´.

Пусть выполняется определение 1´. Линейная комбинация системы векторов равна , причем не все коэффициенты комбинации равны нулю, например, коэффициенты при векторе .

Один из векторов системы мы представили в виде линейной комбинации остальных, т.е. выполняется определение 1.

Определение 2. Единичным вектором, или ортом, называется n-мерный вектор , у которого i -я координата равна единице, а остальные - нулевые.

. (1, 0, 0, …, 0),

(0, 1, 0, …, 0),

(0, 0, 0, …, 1).

Теорема 1. Различные единичные векторы n -мерного пространства линейно независимы.

Доказательство. Пусть линейная комбинация этих векторов с произвольными коэффициентами равна нулевому вектору.

Из этого равенства следует, что все коэффициенты равны нулю. Получили противоречие.

Каждый вектор n -мерного пространства ā (а 1 , а 2 , ..., а n ) может быть представлен в виде линейной комбинации единичных векторов с коэффициентами, равными координатам вектора

Теорема 2. Если системы векторов содержит нулевой вектор, то она линейно зависима.

Доказательство. Пусть дана система векторов и один из векторов является нулевым, например = . Тогда с векторами данной системы можно составить линейную комбинацию, равную нулевому вектору, причем не все коэффициенты будут нулевыми:

Следовательно, система линейно зависима.

Теорема 3. Если некоторая подсистема системы векторов линейно зависима, то и вся система линейно зависима.

Доказательство. Дана система векторов . Предположим, что система линейно зависима, т.е. найдутся числа с 1 , с 2 , …, с r , не все равные нулю, такие, что = . Тогда

Получилось, что линейная комбинация векторов всей системы равна , причем не все коэффициенты этой комбинации равны нулю. Следовательно, система векторов линейно зависима.

Следствие. Если система векторов линейно независима, то и любая ее подсистема также линейно независима.

Доказательство.

Предположим противное, т.е. некоторая подсистема линейно зависима. Из теоремы следует, что вся система линейно зависима. Мы пришли к противоречию.

Теорема 4 (теорема Штейница). Если каждый из векторов является линейной комбинацией векторов и m >n , то система векторов линейно зависима.

Следствие. В любой системе n -мерных векторов не может быть больше чем n линейно независимых.

Доказательство. Каждый n -мерный вектор выражается в виде линейной комбинации n единичных векторов. Поэтому, если система содержит m векторов и m >n , то, по теореме, данная система линейно зависима.