Дискретные и непрерывные модели. Open Library - открытая библиотека учебной информации Система клеточных автоматов

30.08.2023 Искусство

Отображения в пространстве.

Трехмерное вращение.

Сдвиг.

Основы преобразований.

Трехмерное изменение масштаба.

Данное преобразование производит частное изменение масштаба. Общее изменение масштаба получается за счет использования четвертого диагонального элемента.

Не диагональные элементы левой верхней подматрицы 3*3 в общем матричном преобразование размером 4*4 осуществляется сдвиг в трех измерениях, то есть:

В предыдущем случае было показано, что матрица 3*3 обеспечивает комбинацию операций измерения масштаба и сдвига. Однако, если определенная матрица 3*3 = 1, то имеет место чистое вращение около начала координат.

Рассмотрим несколько частных случаев вращения.

При вращение вокруг оси х размеры вдоль оси х не изменяются, таким образом матрица преобразований будет иметь нули в первой строке и столбце, за исключением единицы на главной диагонали. И будет иметь вид:

Угол Ө - угол вращения вокруг оси х;

Вращение предполагается положительным по часовой стрелке, если смотреть с начала координат вдоль оси вращения.

Для вращения на угол φ около оси Y нули ставят во второй стороне и столбце матрицы преобразования за исключением единицы на главной диагонали.

Матрица имеет вид:

Аналогично матрица преобразований для вращения на угол ψ вокруг оси Z:

Так как вращение описывается умножением матрицы, то трехмерное вращение не коммутативное, то есть порядок умножения будет влиять на конечный результат.

Иногда требуется выполнить зеркальное отображение трехмерного изображения.

Рассмотрим частный случай отображения. Матрица преобразования относительно плоскости XYимеет вид:

И отображение YZ или отображение XZприотображение относительно других плоскостей можно получить путем комбинации вращения и отображения.

Для отображения yz:

Для отображения xz:

Тв.модели

При каркасном моделировании хотя оно и является объемным, мы не учитываем, что является телом, а что внутренностью.

Поэтому появляется термин – твердотельная модель.

Термин твердотельная модель говорит о том, что помимо свойств описания геометрии (очерков, каркасов) существуют признаки или свойства, разделяющие пространства на свободное и на сам геометрический объект.

В связи с тем, что описание свойства твердотельности математической модели может быть многообразными. Приведем только некоторые способы описания твердотельных моделей.



Принцип построения дискретной модели заключается в том, что объект делится на элементарнее подпространства. Данному элементарному подпространству присваивается индекс, определяющий принадлежность или непринадлежность к телу.

Преимущества:

1. Разработан математический аппарат на основе булевой алгебры и математической логики.

2. Простота задания геометрического объекта.

Недостатки:

1. Геометрический объект задается дискретно, возникает вопрос математической модели о точности задания геометрического объекта по гладкости, по возможности построения нормали к геометрическому объекту.

2. Для данной модели существуют проблемы в уравнении и масштабировании геометрического объекта.

Эффект масштабирования - нельзя ни растянуть ни сжать, делаем от и до.

6. Непрерывные и дискретные модели.

Будем предполагать, что возможно, хотя бы в принципе, установить и на некотором языке описания (например, средствами математики) охарактеризовать зависимость каждой из выходных переменных от входных. Связь между входными и выходными переменными моделируемого объекта в принципе может характеризоваться графически, аналитически, т.е. посредством некоторой формулы общего вида, или алгоритмически. Независимо от формы представления конструкта, описывающего эту связь, будем именовать его оператором вход-выход и обозначать через В.

Пусть М=М(X,Y, Z ), где X – множество входов, Y – выходов, Z – состояний системы. Схематически можно это изобразить: X Z Y .

Рассмотрим теперь наиболее существенные с точки зрения моделирования внутренние свойства объектов разного класса. При этом придется использовать понятие структура и параметры моделируемого объекта. Под структурой понимается совокупность учитываемых в модели компонентов и связей, содержащихся внутри объекта, а после формализации описания объекта – вид математического выражения, которое связывает его входные и выходные переменные (например: у= au + bv ). Параметры представляют собой количественные характеристики внутренних свойств объекта, которые отражаются принятой структурой, а в формализованной математической модели они суть коэффициенты (постоянные переменные), входящие в выражения, которыми описывается структура (а и b ).

Непрерывность и дискретность . Все те объекты, переменные которых (включая, при необходимости, время) могут принимать несчетное множество сколь угодно близких друг к другу значений называются непрерывными или континуальными. Подавляющее большинство реальных физических и теоретических объектов, состояние которых характеризуется только макроскопическими физическими величинами (температура, давление, скорость, ускорение, сила тока, напряженность электрического или магнитного полей и т.д.) обладают свойством непрерывности. Математические структуры, адекватно описывающие такие объекты, тоже должны быть непрерывными. Поэтому при модельном описании таких объектов используется главным образом, аппарат дифференциальных и интегро-дифференциальных уравнений. Объекты, переменные которых могут принимать некоторое, практически всегда конечное число наперед известных значений, называются дискретными. Примеры: релейно-контактные переключательные схемы, коммутационные системы АТС. Основой формализованного описания дискретных объектов является аппарат математической логики (логические функции, аппарат булевой алгебры, алгоритмические языки). В связи с развитием ЭВМ дискретные методы анализа получили широкое распространение также для описания и исследования непрерывных объектов.

Свойство непрерывности и дискретности выражается в структуре множеств (совокупностей), которым принадлежат параметры состояния, параметр процесса и входы, выходы системы. Таким образом, дискретность множеств Z , Т, Х, Y ведет к модели, называемой дискретной, а их непрерывность - к модели с непрерывными свойствами. Дискретность входов (импульсы внешних сил, ступенчатость воздействий и др.) в общем случае не ведет к дискретности модели в целом. Важной характеристикой дискретной модели является конечность или бесконечность числа состояний системы и числа значений выходных характеристик. В первом случае модель называется дискретной конечной. Дискретность модели также может быть как естественным условием (система скачкообразно меняет свое состояние и выходные свойства), так и искусственно внесенной особенностью. Типичный пример последнего – замена непрерывной математической функции на набор ее значений в фиксированных точках.

Пример.

Пример.

Пример.

Пример. Модель S=gt2/2, 0 < t < 100 непрерывна на промежутке времени (0;100).

Пример.

a1x1 + a2x2 = S,

Детерминированные и стохастические модели

Модель детерминированная, если каждому входному набору параметров соответствует вполне определенный и однозначно определяемый набор выходных параметров; в противном случае - модель недетерминированная, стохастическая (вероятностная).

Пример. Приведенные выше физические модели - детерминированные. Если в модели S = gt2 / 2, 0 < t < 100 мы учли бы случайный параметр - порыв ветра с силой p при падении тела:

S(p) = g(p) t2 / 2, 0 < t < 100,

то мы получили бы стохастическую модель (уже не свободного) падения.

Функциональные, теоретико-множественные и логические модели

Модель функциональная, если она представима в виде системы каких- либо функциональных соотношений.

Модель теоретико-множественная, если она представима с помощью некоторых множеств и отношений принадлежности им и между ними.

Пример. Пусть задано множество

X = {Николай, Петр, Николаев, Петров, Елена, Екатерина, Михаил, Татьяна} и отношения:

Николай - супруг Елены,

Екатерина - супруга Петра,

Татьяна - дочь Николая и Елены,

Михаил - сын Петра и Екатерины,

семьи Михаила и Петра дружат друг с другом.

Тогда множество X и множество перечисленных отношений Y могут служить теоретико-множественной моделью двух дружественных семей.

Модель называется логической, если она представима предикатами, логическими функциями.

Например, совокупность логических функций вида:

z = x y x, p = x y

есть математическая логическая модель работы дискретного устройства.

Игровые модели

Модель игровая, если она описывает, реализует некоторую игровую ситуацию между участниками игры.

Пример. Пусть игрок 1 - добросовестный налоговый инспектор, а игрок 2 - недобросовестный налогоплательщик. Идет процесс (игра) по уклонению от налогов (с одной стороны) и по выявлению сокрытия уплаты налогов (с другой стороны). Игроки выбирают натуральные числа i и j (i, j n), которые можно отождествить, соответственно, со штрафом игрока 2 за неуплату налогов при обнаружении игроком 1 факта неуплаты и с временной выгодой игрока 2 от сокрытия налогов. Если в качестве модели взять матричную игру с матрицей выигрышей порядка n, то в ней каждый элемент определяется по правилу aij = |i - j|. Модель игры описывается этой матрицей и стратегией уклонения и поимки. Эта игра - антагонистическая.

Лингвистические модели

Модель называется языковой, лингвистической, если она представлена некоторым лингвистическим объектом, формализованной языковой системой или структурой.

Иногда такие модели называют вербальными, синтаксическими.

Например, правила дорожного движения - языковая, структурная модель движения транспорта и пешеходов на дорогах.

Пусть B - множество производящих основ существительных, C - множество суффиксов, P - прилагательных, b i – корень слова; "+" - операция конкатенации слов, ":=" - операция присваивания, "=>" - операция вывода (выводимости новых слов), Z - множество значений (смысловых) прилагательных.

Языковая модель M словообразования может быть представлена:

= + <с i >.

При b i - "рыб(а)", с i - "н(ый)", получаем по этой модели p i - "рыбный", z i - "приготовленный из рыбы".

Система клеточных автоматов

Модель клеточно-автоматная, если она представима клеточным автоматом или системой клеточных автоматов.

Клеточный автомат - дискретная динамическая система, аналог физического (непрерывного) поля. Клеточно-автоматная геометрия - аналог евклидовой геометрии. Неделимый элемент евклидовой геометрии - точка, на основе ее строятся отрезки, прямые, плоскости и т.д.

Неделимый элемент клеточно-автоматного поля - клетка, на основе её строятся кластеры клеток и различные конфигурации клеточных структур. Представляется клеточный автомат равномерной сетью клеток ("ячеек") этого поля. Эволюция клеточного автомата разворачивается в дискретном пространстве - клеточном поле.

Смена состояний в клеточно-автоматном поле происходит одновременно и параллельно, а время идет дискретно. Несмотря на кажущуюся простоту их построения, клеточные автоматы могут демонстрировать разнообразное и сложное поведение объектов, систем.

В последнее время они широко используются при моделировании не только физических, но и социально-экономических процессов.

Фрактальные модели

Модель называется фрактальной, если она описывает эволюцию моделируемой системы эволюцией фрактальных объектов.

Если физический объект однородный (сплошной), т.е. в нем нет полостей, то можно считать, что его плотность не зависит от размера. Например, при увеличении параметра объекта R до 2R масса объекта увеличится в R 2 раз, если объект- круг и в R 3 раз, если объект - шар, т.е. существует связь массы и длины. Пусть n - размерность пространства. Объект, у которого масса и размер связаны называется "компактным". Его плотность можно рассчитать по формуле:

Если объект (система) удовлетворяет соотношению M(R) ~ R f(n) , где f(n) < n, то такой объект называется фрактальным.

Его плотность не будет одинаковой для всех значений R, то она масштабируется согласно формуле:

Так как f(n) - n < 0 по определению, то плотность фрактального объекта уменьшается с увеличением размера R, а ρ(R) является количественной мерой разряженности объекта.

Пример фрактальной модели - множество Кантора. Рассмотрим отрезок . Разделим его на 3 части и выбросим средний отрезок. Оставшиеся 2 промежутка опять разделим на три части и выкинем средние промежутки и т.д. Получим множество, называемое множеством Кантора. В пределе получаем несчетное множество изолированных точек (рис. 1.4 )

Рис. 1.4. Множество Кантора для 3-х делений

Генетические алгоритмы

Идея генетических алгоритмов "подсмотрена" у систем живой природы, у которых эволюция развертывается достаточно быстро.

Генетический алгоритм - это алгоритм, основанный на имитации генетических процедур развития популяции в соответствии с принципами эволюционной динамики.

Генетические алгоритмы используются для решения задач оптимизации (многокритериальной), для задач поиска и управления.

Данные алгоритмы адаптивны, они развивают решения и развиваются сами.

Генетический алгоритм может быть построен на основе следующей укрупненной процедуры:.

Хотя генетические алгоритмы и могут быть использованы для решения задач, которые, нельзя решить другими методами, они не гарантируют нахождение оптимального решения, по крайней мере, за приемлемое время. Здесь более уместны критерии типа "достаточно хорошо и достаточно быстро".

Главное же преимущество их использования заключается в том, что они позволяют решать сложные задачи, для которых не разработаны пока устойчивые и приемлемые методы, особенно на этапе формализации и структурирования системы.

Генетические алгоритмы эффективны в комбинации с другими классическими алгоритмами и эвристическими процедурами.

Статические и динамические, дискретные и непрерывные модели

Классификацию моделей проводят по различным критериям.

Модель называется статической, если среди параметров, участвующих в ее описании, нет временного параметра. Статическая модель в каждый момент времени дает лишь "фотографию" системы, ее срез.

Пример. Закон Ньютона F=a*m - это статическая модель движущейся с ускорением a материальной точки массой m. Эта модель не учитывает изменение ускорения от одной точки к другой.

Модель динамическая, если среди ее параметров есть временной параметр, т.е. она отображает систему (процессы в системе) во времени.

Пример. Динамическая модель закона Ньютона будет иметь вид:

Модель дискретная, если она описывает поведение системы только в дискретные моменты времени.

Пример. Если рассматривать только t=0, 1, 2, …, 10 (сек), то модель

или числовая последовательность: S0=0, S1=g/2, S2=2g, S3=9g/2, :, S10=50g может служить дискретной моделью движения свободно падающего тела.

Модель непрерывная, если она описывает поведение системы для всех моментов времени некоторого промежутка времени.

Пример. Модель S=gt2/2, 0 < t < 100 непрерывна на промежутке времени (0;100).

Модель имитационная, если она предназначена для испытания или изучения возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели.

Пример. Пусть модель экономической системы производства товаров двух видов 1 и 2, в количестве x1 и x2 единиц и стоимостью каждой единицы товара a1 и a2 на предприятии описана в виде соотношения:

a1x1 + a2x2 = S,

где S - общая стоимость произведенной предприятием всей продукции (вида 1 и 2). Можно ее использовать в качестве имитационной модели, по которой можно определять (варьировать) общую стоимость S в зависимости от тех или иных значений объемов и стоимости производимых товаров.

Для описания динамики моделируемых процессов в имитационном моделировании реализован механизм задания модельного времени. Эти механизмы встроены в управляющие программы любой системы моделирования.

Если бы на ЭВМ имитировалось поведение одной компоненты системы, то выполнение действий в имитационной модели можно было бы осуществить последовательно, по пересчету временной координаты. Чтобы обеспечить имитацию параллельных событий реальной системы вводят некоторую глобальную переменную (обеспечивающую синхронизацию всех событий в системе) t0, которую называют модельным (или системным) временем.

Существуют два основных способа изменения t 0 :

  • пошаговый (применяются фиксированные интервалы изменения модельного времени);
  • no-событийный (применяются переменные интервалы изменения модельного времени, при этом величина шага измеряется интервалом до следующего события).

В случае пошагового метода продвижение времени происходит с минимально возможной постоянной длиной шага (принцип t). Эти алгоритмы не очень эффективны с точки зрения использования машинного времени на их реализацию.

По-событийный метод (принцип "особых состояний"). В нем координаты времени меняются только когда изменяется состояние системы. В по-событийных методах длина шага временного сдвига максимально возможная. Модельное время с текущего момента изменяется до ближайшего момента наступления следующего события. Применение по-событийного метода предпочтительно в случае, если частота наступления событий невелика, тогда большая длина шага позволит ускорить ход модельного времени. На практике по-событийный метод получил наибольшее распространение.

Способ фиксированного шага применяется:

если закон изменения от времени описывается интегро-дифференциальными уравнениями. Характерный пример: решение интегро-дифференциальных уравнений численным методом. В подобных методах шаг моделирования равен шагу интегрирования. При их использовании динамика модели является дискретным приближением реальных непрерывных процессов; когда события распределены равномерно и можно подобрать шаг изменения временной координаты; когда сложно предсказать появление определенных событий; когда событий очень много и они появляются группами.

В остальных случаях применяется по-событийный метод. Он предпочтителен, когда события распределены неравномерно на временной оси и появляются через значительные временные интервалы.

Таким образом, вследствие последовательного характера обработки информации в ЭВМ, параллельные процессы, происходящие в модели, преобразуются с помощью рассмотренного механизма в последовательные. Такой способ представления носит название квазипараллельного процесса.


Простейшая классификация на основные виды имитационных моделей связана с применением двух этих способов продвижения модельного времени. Различают имитационные модели:

Непрерывные;

Дискретные;

Непрерывно-дискретные.

В непрерывных имитационных моделях переменные изменяются непрерывно, состояние моделируемой системы меняется как непрерывная функция времени, и, как правило, это изменение описывается системами дифференциальных уравнений. Соответственно продвижение модельного времени зависит от численных методов решения дифференциальных уравнений.

В дискретных имитационных моделях переменные изменяются дискретно в определенные моменты имитационного времени (наступления событий). Динамика дискретных моделей представляет собой процесс перехода от момента наступления очередного события к моменту наступления следующего события.

Поскольку в реальных системах непрерывные и дискретные процессы часто невозможно разделить, были разработаны непрерывно-дискретные модели, в которых совмещаются механизмы продвижения времени, характерные для этих двух процессов.

Дискретной называется система, которая может переходить из одного состояния в другое только в определенные моменты времени. Дискретные системы распространены очень широко. Например, цифровой компьютер является дискретной системой. Если модель непрерывной системы является дифференциальное уравнение, то моделью дискретной системы является разностное уравнение. Дискретные системы можно представить также в пространстве состояний или с помощью передаточной функции. Предположим, что мы используем компьютер для управления неким объектом (рис. 5.1).

Рис. 5.1. Цифровая система управления

Поскольку компьютер является цифровым устройством, работающим в реальном времени, он может принимать информацию в дискретные моменты времени. Пусть эти моменты отстоят друг от друга на постоянную величину. Этот интервал времени называется шагом дискретизации.

Тогда сигнал, поступающий в компьютер, можно представить в виде числовой последовательности, которую мы обозначим как. Очень часто параметр опускают, и тогда обозначение превращается в.

Выходной сигнал также является числовой последовательностью. Компьютер обладает памятью, поэтому мы можем запоминать входные и выходные сигналы в прошедшие моменты времени. Линейное разностное уравнение с постоянными коэффициентами и -го порядка выглядит следующим образом

Порядок уравнения определяет «глубину памяти» системы.

В рассматриваемом нами случае разностное уравнение (5.1) описывает динамику регулятора, в качестве которого используется цифровой компьютер. Однако оно может служить и моделью объекта, если тот является линейной дискретной системой.

Решить разностное уравнение означает найти последовательность. Такую последовательность называют решетчатой функцией. Существует три основных метода решения линейных разностных уравнений с постоянными коэффициентами. Первый (классический) метод состоит в нахождении общего и частного решений подобно тому, как это делается при классическом решении линейных дифференциальных уравнений. Этот метод мы рассматривать не будем. Второй метод является рекуррентным; он используется при решении разностных уравнений с помощью цифрового компьютера. Мы рассмотрим его на примере.

Пример 5.1. Получим решение следующего разностного уравнения

Причем, . Решения для можно получить, положив сначала в разностном уравнении, затем, затем и т.д. В результате получим

Используя этот метод, можно определить для любых значений. При больших значениях подобная процедура очень трудоемка, поэтому лучше выполнить ее на компьютере. Последний пример для решается с помощью следующей программы «MATLAB»:

mkminus1=0; ekminus1=0; ek=1;

mk=ek-ekminus1-mkminus1;

В этой программе ekminus1 соответствует значению, ek - значению, mkminus1 - значению, а mk - значению.

В качестве второго примера применения рекуррентного метода решения разностных уравнений рассмотрим численное интегрирование дифференциального уравнения по методу Эйлера. Дано дифференциальное уравнение первого порядка:

Для малого значения производную можно представить как

Тогда дифференциальное уравнение приближенно примет вид:

Переходя к дискретному времени, получим разностное уравнение

Таким образом, интегрирование дифференциального уравнения методом Эйлера сводится к получению разностного уравнения. Вообще любой метод численного интегрирования может быть сведен к разностному уравнению и запрограммирован для решения на цифровом компьютере.

Третий метод решения линейных разностных уравнений с постоянными коэффициентами основан на использовании -преобразования, которое эквивалентно преобразованию Лапласа для непрерывных систем. Рассмотрим следующее разностное уравнение -го порядка, считая входную последовательность известной

Преобразование данного уравнения выглядит следующим образом:

где - параметр -преобразования, - параметр преобразования Лапласа,

Шаг дискретизации,

Изображение входного сигнала,

Изображение выходного сигнала.

Преобразование основано на теореме операционного исчисления о запаздывании. Если, то.

Уравнение (5.3) можно переписать следующим образом

Поскольку известно, то можно найти, применив обратное -преобразование к выражению (5.4).

Пример 5.2. Рассмотрим разностное уравнение из предыдущего примера

Найдем -преобразование этого уравнения

Отсюда следует

Изображение входного сигнала можно представить в виде

Решетчатая функция равна коэффициентам полученного ряда

В программе имитационного моделирования «Simulink», которая является частью языка технического программирования «MATLAB», модель дискретной системы задается в виде рациональной передаточной функции

где - коэффициенты (вещественные или комплексные).

Конечное множество чисел: () называется полюсами, а множество () - нулями системы (5.4). Полюса (и нули) могут быть действительными, либо комплексными. В последнем случае они образуют пару комплексно-сопряженных чисел. Если система устойчивая, то модули всех ее полюсов меньше единицы. В противном случае - система неустойчивая.

Пример 5.3. Дискретная система первого порядка (инерционное звено) имеет передаточную функцию

где и - коэффициенты (- полюс системы).

Пример 5.4. Дискретная система второго порядка имеет передаточную функцию

где и - полюса системы, .

Пример 5.5. Построим в «MATLAB» модель дискретной системы второго порядка, показанной на рис. 5.2. На рис. 5.3 приведена реакция этой системы на ступенчатый входной сигнал.

Рис. 5.2. Устойчивая дискретная система второго порядка

Рис. 5.3. Реакция устойчивой дискретной системы второго порядка на ступенчатый входной сигнал

Пример 5.6. Построим в «MATLAB» модель дискретной системы второго порядка, показанной на рис. 5.4. На рис. 5.5 приведена реакция этой системы на ступенчатый входной сигнал.

Рис. 5.4. Неустойчивая дискретная система второго порядка

Рис. 5.5. Реакция неустойчивой дискретной системы второго порядка на ступенчатый входной сигнал

Дискретная система, также как и непрерывная, может быть представлена в пространстве состояний:

Уравнение состояния;

Уравнение наблюдения, где

· - входной сигнал;

· - выходной сигнал;

· - вектор состояний;

· A, B, C, D - параметрические матрицы.

Пример 5.7. Система первого порядка может быть описана такими параметрами:

Пример 5.8. Система второго порядка может иметь следующие матрицы.